Effect of Zr Addition on the Microstructure and Toughness of Coarse-Grained Heat-Affected Zone with High-Heat Input Welding Thermal Cycle in Low-Carbon Steel

2017 ◽  
Vol 26 (7) ◽  
pp. 3160-3168 ◽  
Author(s):  
Ming-hao Shi ◽  
Xiao-guang Yuan ◽  
Hong-jun Huang ◽  
Si Zhang
Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1863
Author(s):  
Leping Wang ◽  
Huibing Fan ◽  
Genhao Shi ◽  
Qiuming Wang ◽  
Qingfeng Wang ◽  
...  

For investigating the impact of ferritic morphology on yield strength (YS) of the high-heat-input welding induced coarse-grained heat-affected zone (CGHAZ) of a low carbon Mo-V-N-Ti-B steel, a group of particular welding heat inputs were designed to obtain different ferritic microstructures in CGHAZ. The tensile properties were estimated from typical samples with ferritic microstructures. The mixed microstructures dominated by the intragranular polygonal ferrite (IGPF), the intragranular acicular ferrite (IGAF), and the granular bainite (GB) were obtained at the heat inputs of 35, 65, 85 and 120 kJ/cm, respectively. When the main microstructure changed from IGPF to IGAF and GB, YS increased first and then decreased. The microstructure consisting mainly of IGAF possessed the maximum YS. As the main microstructure changed from IGPF to IGAF and GB, the contribution of grain refinement strengthening to YS was estimated to be elevated remarkably. This means the strength of CGHAZ in a low-carbon steel subjected to the high-heat-input welding could be enhanced by promoting the fine-grained AF and GB formation.


2009 ◽  
Vol 53 (3-4) ◽  
pp. R57-R63 ◽  
Author(s):  
Yasushi Kitani ◽  
Rinsei Ikeda ◽  
Moriaki Ono ◽  
Kenji Ikeuchi

Sign in / Sign up

Export Citation Format

Share Document