Effect of Octet-Truss Lattice Transition Geometries on Mechanical Properties

Author(s):  
Ender Emir ◽  
Erkan Bahçe ◽  
Alper Uysal
Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


Author(s):  
M. Carraturo ◽  
G. Alaimo ◽  
S. Marconi ◽  
E. Negrello ◽  
E. Sgambitterra ◽  
...  

AbstractAdditive manufacturing (AM), and in particular selective laser melting (SLM) technology, allows to produce structural components made of lattice structures. These kinds of structures have received a lot of research attention over recent years due to their capacity to generate easy-to-manufacture and lightweight components with enhanced mechanical properties. Despite a large amount of work available in the literature, the prediction of the mechanical behavior of lattice structures is still an open issue for researchers. Numerical simulations can help to better understand the mechanical behavior of such a kind of structure without undergoing long and expensive experimental campaigns. In this work, we compare numerical and experimental results of a uniaxial tensile test for stainless steel 316L octet-truss lattice specimen. Numerical simulations are based on both the nominal as-designed geometry and the as-build geometry obtained through the analysis of µ-CT images. We find that the use of the as-build geometry is fundamental for an accurate prediction of the mechanical behavior of lattice structures.


2019 ◽  
Vol 173 ◽  
pp. 107773 ◽  
Author(s):  
Jian Song ◽  
Wenzhao Zhou ◽  
Yuejiao Wang ◽  
Rong Fan ◽  
Yinchu Wang ◽  
...  

2020 ◽  
Vol 7 (8) ◽  
pp. 085201
Author(s):  
Weiming Zhao ◽  
Cao Wang ◽  
Bohang Xing ◽  
Minhao Shen ◽  
Zhe Zhao

2017 ◽  
Vol 101 ◽  
pp. 133-149 ◽  
Author(s):  
ZeZhou He ◽  
FengChao Wang ◽  
YinBo Zhu ◽  
HengAn Wu ◽  
Harold S. Park

2019 ◽  
Vol 25 (9) ◽  
pp. 1525-1535
Author(s):  
Yunhui Yang ◽  
Libin Zhao ◽  
Dexuan Qi ◽  
Meijuan Shan ◽  
Jianyu Zhang

Purpose This paper aims to present a multiscale fuzzy optimization (FO) method to optimize both the density distribution and macrotopology of a uniform octet-truss lattice structure. Design/methodology/approach The design formulae for the strut radii are presented based on the effective mechanical properties obtained from the representative volume element. The proposed basic lattice material is applied in a normalization process to determine the material model with penalization. The solid isotropic material with penalization (SIMP) method is extended to solve the minimum compliance problem using the optimality criteria. The evolutionary deletion process is proposed to delete elements corresponding to thin-strut unit cells and to obtain the optimal macrotopology. Findings Both numerical cases indicate that the FO results significantly improved in structural performance compared with the results of the conventional SIMP. The deleting threshold controls the macrotopology of the graded-density lattice structures with negligible effects on the mechanical properties. Originality/value This paper presents one of the first multiscale optimization methods to optimize both the relative density and macrotopology of uniform octet-truss lattices. The material model and corresponding optimality criteria of octet-truss lattices are proposed and implemented in the optimization.


Author(s):  
Mohamed Abdelhamid ◽  
Aleksander Czekanski

Cellular materials are found extensively in nature, such as wood, honeycomb, butterfly wings, and foam-like structures like trabecular bone and sponge. This class of materials proves to be structurally efficient by combining low weight with superior mechanical properties. Recent studies have shown that there are coupling relations between the mechanical properties of cellular materials and their relative density. Due to its favorable stretching‐dominated behavior, continuum models of the octet‐truss were developed to describe its effective mechanical properties. However, previous studies were only performed for the cubic symmetry case, where the lattice angle θ=45 deg. In this work, we study the impact of the lattice angle on the effective properties of the octet-truss: namely, the relative density, effective stiffness, and effective strength. The relative density formula is extended to account for different lattice angles up to a higher-order of approximation. Tensor transformations are utilized to obtain relations of the effective elastic and shear moduli, and Poisson's ratio at different lattice angles. Analytical formulas are developed to obtain the loading direction and value of the maximum and minimum specific elastic moduli at different lattice angles. In addition, tridimensional polar representations of the macroscopic strength of the octet‐truss are analyzed for different lattice angles. Finally, collapse surfaces for plastic yielding and elastic buckling are investigated for different loading combinations at different lattice angles. It has been found that lattice angles lower than 45 deg result in higher maximum values of specific effective elastic moduli, shear moduli, and strength.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Sign in / Sign up

Export Citation Format

Share Document