scholarly journals Point-cloud segmentation of individual trees in complex natural forest scenes based on a trunk-growth method

Author(s):  
Qianwei Liu ◽  
Weifeng Ma ◽  
Jianpeng Zhang ◽  
Yicheng Liu ◽  
Dongfan Xu ◽  
...  

AbstractForest resource management and ecological assessment have been recently supported by emerging technologies. Terrestrial laser scanning (TLS) is one that can be quickly and accurately used to obtain three-dimensional forest information, and create good representations of forest vertical structure. TLS data can be exploited for highly significant tasks, particularly the segmentation and information extraction for individual trees. However, the existing single-tree segmentation methods suffer from low segmentation accuracy and poor robustness, and hence do not lead to satisfactory results for natural forests in complex environments. In this paper, we propose a trunk-growth (TG) method for single-tree point-cloud segmentation, and apply this method to the natural forest scenes of Shangri-La City in Northwest Yunnan, China. First, the point normal vector and its Z-axis component are used as trunk-growth constraints. Then, the points surrounding the trunk are searched to account for regrowth. Finally, the nearest distributed branch and leaf points are used to complete the individual tree segmentation. The results show that the TG method can effectively segment individual trees with an average F-score of 0.96. The proposed method applies to many types of trees with various growth shapes, and can effectively identify shrubs and herbs in complex scenes of natural forests. The promising outcomes of the TG method demonstrate the key advantages of combining plant morphology theory and LiDAR technology for advancing and optimizing forestry systems.

2021 ◽  
Vol 2074 (1) ◽  
pp. 012026
Author(s):  
Renpeng Liu ◽  
Lisheng Ren ◽  
Fang Wang

Abstract Semantic segmentation of single tree 3D point cloud is one of the key technologies in building tree model. It plays an important role in tree skeleton extraction, tree pruning, tree model reconstruction and other fields. Because the area of a single leaf is smaller than that of the whole tree, the segmentation of branches and leaves is a challenging problem. In view of the above problems, this paper first migrates PointNet to the tree branch and leaf point cloud segmentation, and proposes an automatic segmentation method based on improved PointNet. According to the difference of normal direction between leaves and branches, the point cloud information of three dimensions coordinates, color and normal vector is input into the point feature space. In data processing, increase the number of each block data, so that the network can better learn features. MLP is added to the original PointNet network to improve the ability of extracting and learning local features. In addition, in the process of feature extraction, jump connection is added to realize feature reuse and make full use of different levels of features. The original 1×1 filter of PointNet is replaced by 3×1 filter to improve the segmentation accuracy of tree point cloud. The focus loss function focal loss is introduced into the field of 3D point cloud to reduce the impact of the imbalance of point cloud samples on the results. The results show that the improved method improves the accuracy of tree branch point cloud segmentation compared with the original PointNet for branch and leaf segmentation. The segmentation accuracy of structural elements of branches and leaves is more than 88%, and MIoU is 48%.


2019 ◽  
Vol 11 (6) ◽  
pp. 623 ◽  
Author(s):  
Zhaojin Yan ◽  
Rufei Liu ◽  
Liang Cheng ◽  
Xiao Zhou ◽  
Xiaoguang Ruan ◽  
...  

Crown volume is an important tree factor used in forest surveys as a prerequisite for estimating biomass and carbon stocks. This study developed a method for accurately calculating the crown volume of individual trees from vehicle-borne laser scanning (VLS) data using a concave hull by slices method. CloudCompare, an open-source three-dimensional (3D) point cloud and mesh processing software package, was used with VLS data to segment individual trees from which single tree crowns were extracted by identifying the first branch point of the tree. The slice thickness and number to be fitted to the canopy point cloud were adaptively determined based on the change rate in area with height, with the area of each slice calculated using the concave hull algorithm with portions of the crown regarded as truncated cones. The overall volume was then calculated as the sum of all sub-volumes. The proposed method was experimentally validated on 30 urban trees by comparing the crown volumes calculated using the proposed method with those calculated using five existing methods (manual measurement, 3D convex hull, 3D alpha shape, convex hull by slices, and voxel-based). The proposed method produced the smallest average crown volume. Gaps and holes in the point cloud were regarded as part of the crown by the manual measurement, 3D convex hull, and convex hull by slices method, resulting in the calculated volume being higher than the true value; the proposed method reduced this effect. These results indicate that the concave hull by slices method can more effectively calculate the crown volume of a single tree from VLS data.


2021 ◽  
Vol 13 (12) ◽  
pp. 2297
Author(s):  
Jonathon J. Donager ◽  
Andrew J. Sánchez Meador ◽  
Ryan C. Blackburn

Applications of lidar in ecosystem conservation and management continue to expand as technology has rapidly evolved. An accounting of relative accuracy and errors among lidar platforms within a range of forest types and structural configurations was needed. Within a ponderosa pine forest in northern Arizona, we compare vegetation attributes at the tree-, plot-, and stand-scales derived from three lidar platforms: fixed-wing airborne (ALS), fixed-location terrestrial (TLS), and hand-held mobile laser scanning (MLS). We present a methodology to segment individual trees from TLS and MLS datasets, incorporating eigen-value and density metrics to locate trees, then assigning point returns to trees using a graph-theory shortest-path approach. Overall, we found MLS consistently provided more accurate structural metrics at the tree- (e.g., mean absolute error for DBH in cm was 4.8, 5.0, and 9.1 for MLS, TLS and ALS, respectively) and plot-scale (e.g., R2 for field observed and lidar-derived basal area, m2 ha−1, was 0.986, 0.974, and 0.851 for MLS, TLS, and ALS, respectively) as compared to ALS and TLS. While TLS data produced estimates similar to MLS, attributes derived from TLS often underpredicted structural values due to occlusion. Additionally, ALS data provided accurate estimates of tree height for larger trees, yet consistently missed and underpredicted small trees (≤35 cm). MLS produced accurate estimates of canopy cover and landscape metrics up to 50 m from plot center. TLS tended to underpredict both canopy cover and patch metrics with constant bias due to occlusion. Taking full advantage of minimal occlusion effects, MLS data consistently provided the best individual tree and plot-based metrics, with ALS providing the best estimates for volume, biomass, and canopy cover. Overall, we found MLS data logistically simple, quickly acquirable, and accurate for small area inventories, assessments, and monitoring activities. We suggest further work exploring the active use of MLS for forest monitoring and inventory.


2021 ◽  
Vol 11 ◽  
Author(s):  
David Pont ◽  
Heidi S. Dungey ◽  
Mari Suontama ◽  
Grahame T. Stovold

Phenotyping individual trees to quantify interactions among genotype, environment, and management practices is critical to the development of precision forestry and to maximize the opportunity of improved tree breeds. In this study we utilized airborne laser scanning (ALS) data to detect and characterize individual trees in order to generate tree-level phenotypes and tree-to-tree competition metrics. To examine our ability to account for environmental variation and its relative importance on individual-tree traits, we investigated the use of spatial models using ALS-derived competition metrics and conventional autoregressive spatial techniques. Models utilizing competition covariate terms were found to quantify previously unexplained phenotypic variation compared with standard models, substantially reducing residual variance and improving estimates of heritabilities for a set of operationally relevant traits. Models including terms for spatial autocorrelation and competition performed the best and were labelled ACE (autocorrelation-competition-error) models. The best ACE models provided statistically significant reductions in residuals ranging from −65.48% for tree height (H) to −21.03% for wood stiffness (A), and improvements in narrow sense heritabilities from 38.64% for H to 14.01% for A. Individual tree phenotyping using an ACE approach is therefore recommended for analyses of research trials where traits are susceptible to spatial effects.


2021 ◽  
Author(s):  
Puliti Stefano ◽  
Grant D. Pears ◽  
Michael S. Watt ◽  
Edward Mitchard ◽  
Iain McNicol ◽  
...  

<p>Survey-grade drone laser scanners suitable for unmanned aerial vehicles (UAV-LS) allow the efficient collection of finely detailed three-dimensional information of tree structures. This data type allows forests to be resolved into discrete individual trees and has shown promising results in providing accurate in-situ observations of key forestry variables. New and improved approaches for analyzing UAV-LS point clouds have to be developed to transform the vast amounts of data from UAV-LS into actionable insights and decision support. Many different studies have explored various methods for automating single tree detection, segmentation, parsing into different tree components, and measurement of biophysical variables (e.g., diameter at breast height). Despite the considerable efforts dedicated to developing automated ways to process UAV-LS data into useful data, current methods tend to be tailored to small datasets, and it remains challenging to evaluate the performance of different algorithms based on a consistent validation dataset. To fill this knowledge gap and to further advance our ability to measure forests from UAV-LS data, we present a new benchmarking dataset. This data is composed of manually labelled UAV-LS data acquired a number of continents and biomes which span tropical to boreal forests. The UAV-LS data was collected exclusively used survey-grade sensors such as the Riegl VUX and mini-VUX series which are characterized by a point density in the range 1 – 10 k points m<sup>2</sup>. Currently, such data represent the state-of-the-art in aerial laser scanning data. The benchmark data consists of a library of single-tree point clouds, aggregated to sample plots, with each point classified as either stem, branch, or leaves. With the objective of releasing such a benchmark dataset as a public asset, in the future, researchers will be able to leverage such pre-existing labelled trees for developing new methods to measure forests from UAV-LS data. The availability of benchmarking datasets represents an important driver for enabling the development of robust and accurate methods. Such a benchmarking dataset will also be important for a consistent comparison of existing or future algorithms which will guide future method development.</p>


2012 ◽  
Vol 52 (No. 4) ◽  
pp. 158-171 ◽  
Author(s):  
J. Remeš

This paper deals with the transformation of pure even-aged forest stands to mixed and more uneven-aged stands on an example of selected even-aged Norway spruce stands in the School Forest Enterprise (SFE) in Kostelec nad Černými lesy. A forest stand where individual tree felling was used as the main method of forest stand regeneration was chosen as a conversion example. The main criterion of tree maturity is the culmination of mean volume increment of a single tree. The analyses confirmed a very high variability in the growth potential of individual trees. The potential and actual increment was strongly influenced by the stand position of tree and by crown release. These results show a high potential level of tree growth even at the age of 120 years. From 30% to 9% of all trees on particular experimental plots achieved felling maturity.


2020 ◽  
Vol 50 (10) ◽  
pp. 1012-1024
Author(s):  
Meimei Wang ◽  
Jiayuan Lin

Individual tree height (ITH) is one of the most important vertical structure parameters of a forest. Field measurement and laser scanning are very expensive for large forests. In this paper, we propose a cost-effective method to acquire ITHs in a forest using the optical overlapping images captured by an unmanned aerial vehicle (UAV). The data sets, including a point cloud, a digital surface model (DSM), and a digital orthorectified map (DOM), were produced from the UAV imagery. The canopy height model (CHM) was obtained by subtracting the digital elevation model (DEM) from the DSM removed of low vegetation. Object-based image analysis was used to extract individual tree crowns (ITCs) from the DOM, and ITHs were initially extracted by overlaying ITC outlines on the CHM. As the extracted ITHs were generally slightly shorter than the measured ITHs, a linear relationship was established between them. The final ITHs of the test site were retrieved by inputting extracted ITHs into the linear regression model. As a result, the coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the mean relative error (MRE) of the retrieved ITHs against the measured ITHs were 0.92, 1.08 m, 0.76 m, and 0.08, respectively.


2015 ◽  
Vol 77 (26) ◽  
Author(s):  
Nurliyana Izzati Ishak ◽  
Md Afif Abu Bakar ◽  
Muhammad Zulkarnain Abdul Rahman ◽  
Abd Wahid Rasib ◽  
Kasturi Devi Kanniah ◽  
...  

This paper presents a novel non-destructive approach for individual tree stem and branch biomass estimation using terrestrial laser scanning data. The study area is located at the Royal Belum Reserved Forest area, Gerik, Perak. Each forest plot was designed with a circular shape and contains several scanning locations to ensure good visibility of each tree. Unique tree signage was located on trees with diameter at breast height (DBH) of 10cm and above.  Extractions of individual trees were done manually and the matching process with the field collected tree properties were relied on the tree signage and tree location as collected by total station. Individual tree stems were reconstructed based on cylinder models from which the total stem volume was calculated. Biomass of individual tree stems was calculated by multiplying stem volume with specific wood density. Biomass of individual was estimated using similar concept of tree stem with the volume estimated from alpha-hull shape. The root mean squared errors (RMSE) of estimated biomass are 50.22kg and 27.20kg for stem and branch respectively. 


2020 ◽  
Author(s):  
Moritz Bruggisser ◽  
Johannes Otepka ◽  
Norbert Pfeifer ◽  
Markus Hollaus

<p>Unmanned aerial vehicles-borne laser scanning (ULS) allows time-efficient acquisition of high-resolution point clouds on regional extents at moderate costs. The quality of ULS-point clouds facilitates the 3D modelling of individual tree stems, what opens new possibilities in the context of forest monitoring and management. In our study, we developed and tested an algorithm which allows for i) the autonomous detection of potential stem locations within the point clouds, ii) the estimation of the diameter at breast height (DBH) and iii) the reconstruction of the tree stem. In our experiments on point clouds from both, a RIEGL miniVUX-1DL and a VUX-1UAV, respectively, we could detect 91.0 % and 77.6 % of the stems within our study area automatically. The DBH could be modelled with biases of 3.1 cm and 1.1 cm, respectively, from the two point cloud sets with respective detection rates of 80.6 % and 61.2 % of the trees present in the field inventory. The lowest 12 m of the tree stem could be reconstructed with absolute stem diameter differences below 5 cm and 2 cm, respectively, compared to stem diameters from a point cloud from terrestrial laser scanning. The accuracy of larger tree stems thereby was higher in general than the accuracy for smaller trees. Furthermore, we recognized a small influence only of the completeness with which a stem is covered with points, as long as half of the stem circumference was captured. Likewise, the absolute point count did not impact the accuracy, but, in contrast, was critical to the completeness with which a scene could be reconstructed. The precision of the laser scanner, on the other hand, was a key factor for the accuracy of the stem diameter estimation. <br>The findings of this study are highly relevant for the flight planning and the sensor selection of future ULS acquisition missions in the context of forest inventories.</p>


2019 ◽  
Vol 11 (2) ◽  
pp. 211 ◽  
Author(s):  
Wuming Zhang ◽  
Peng Wan ◽  
Tiejun Wang ◽  
Shangshu Cai ◽  
Yiming Chen ◽  
...  

Tree stem detection is a key step toward retrieving detailed stem attributes from terrestrial laser scanning (TLS) data. Various point-based methods have been proposed for the stem point extraction at both individual tree and plot levels. The main limitation of the point-based methods is their high computing demand when dealing with plot-level TLS data. Although segment-based methods can reduce the computational burden and uncertainties of point cloud classification, its application is largely limited to urban scenes due to the complexity of the algorithm, as well as the conditions of natural forests. Here we propose a novel and simple segment-based method for efficient stem detection at the plot level, which is based on the curvature feature of the points and connected component segmentation. We tested our method using a public TLS dataset with six forest plots that were collected for the international TLS benchmarking project in Evo, Finland. Results showed that the mean accuracies of the stem point extraction were comparable to the state-of-art methods (>95%). The accuracies of the stem mappings were also comparable to the methods tested in the international TLS benchmarking project. Additionally, our method was applicable to a wide range of stem forms. In short, the proposed method is accurate and simple; it is a sensible solution for the stem detection of standing trees using TLS data.


Sign in / Sign up

Export Citation Format

Share Document