scholarly journals An optical-flow-based monitoring method for measuring translational motion in infrared-thermographic images of AFP processes

Author(s):  
Berend Denkena ◽  
Carsten Schmidt ◽  
Marc Timmermann ◽  
Andreas Friedel

AbstractThis paper presents a novel method for a precise localization of the automated-fiber-placement head, without the need for a data access to the machine control. It is based on a sub-pixel accurate optical-flow-algorithm which determines information about the heads movement by means of the material flow in sequences of IR images. Using local curvatures in the temperature field of the IR images, feature matrices are created which can locally be compared to the features of successive images. Thus, the translation between images become visible. This enables the possibility to perform an accurate ($$16.8\,\upmu{\mathrm{m}}$$ 16.8 μ m ) and self-sufficient process monitoring that additionally is capable of capturing the motion and position information of the AFP system and can be linked to existing algorithms for defect detection and classification.

2020 ◽  
Vol 10 (6) ◽  
pp. 2118 ◽  
Author(s):  
Guojun Deng ◽  
Zhixiang Zhou ◽  
Shuai Shao ◽  
Xi Chu ◽  
Chuanyi Jian

This paper aims to achieve a large bridge structural health monitoring (SHM) efficiently, economically, credibly, and holographically through noncontact remote sensing (NRS). For these purposes, the author proposes a NRS method for collecting the holographic geometric deformation of test bridge, using static image sequences. Specifically, a uniaxial automatic cruise acquisition device was designed to collect static images on bridge elevation under different damage conditions. Considering the strong spatiotemporal correlations of the sequence data, the relationships between six fixed fields of view were identified through the SIFT algorithm. On this basis, the deformation of the bridge structure was obtained by tracking a virtual target using the optical flow algorithm. Finally, the global holographic deformation of the test bridge was derived. The research results show that: The output data of our NRS method are basically consistent with the finite-element prediction (maximum error: 11.11%) and dial gauge measurement (maximum error: 12.12%); the NRS method is highly sensitive to the actual deformation of the bridge structure under different damage conditions, and can capture the deformation in a continuous and accurate manner. The research findings lay a solid basis for structure state interpretation and intelligent damage identification.


2005 ◽  
Vol 44 (S 01) ◽  
pp. S46-S50 ◽  
Author(s):  
M. Dawood ◽  
N. Lang ◽  
F. Büther ◽  
M. Schäfers ◽  
O. Schober ◽  
...  

Summary:Motion in PET/CT leads to artifacts in the reconstructed PET images due to the different acquisition times of positron emission tomography and computed tomography. The effect of motion on cardiac PET/CT images is evaluated in this study and a novel approach for motion correction based on optical flow methods is outlined. The Lukas-Kanade optical flow algorithm is used to calculate the motion vector field on both simulated phantom data as well as measured human PET data. The motion of the myocardium is corrected by non-linear registration techniques and results are compared to uncorrected images.


Author(s):  
Ramy Harik ◽  
Joshua Halbritter ◽  
Dawn Jegley ◽  
Ray Grenoble ◽  
Brian Mason

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2407
Author(s):  
Hojun You ◽  
Dongsu Kim

Fluvial remote sensing has been used to monitor diverse riverine properties through processes such as river bathymetry and visual detection of suspended sediment, algal blooms, and bed materials more efficiently than laborious and expensive in-situ measurements. Red–green–blue (RGB) optical sensors have been widely used in traditional fluvial remote sensing. However, owing to their three confined bands, they rely on visual inspection for qualitative assessments and are limited to performing quantitative and accurate monitoring. Recent advances in hyperspectral imaging in the fluvial domain have enabled hyperspectral images to be geared with more than 150 spectral bands. Thus, various riverine properties can be quantitatively characterized using sensors in low-altitude unmanned aerial vehicles (UAVs) with a high spatial resolution. Many efforts are ongoing to take full advantage of hyperspectral band information in fluvial research. Although geo-referenced hyperspectral images can be acquired for satellites and manned airplanes, few attempts have been made using UAVs. This is mainly because the synthesis of line-scanned images on top of image registration using UAVs is more difficult owing to the highly sensitive and heavy image driven by dense spatial resolution. Therefore, in this study, we propose a practical technique for achieving high spatial accuracy in UAV-based fluvial hyperspectral imaging through efficient image registration using an optical flow algorithm. Template matching algorithms are the most common image registration technique in RGB-based remote sensing; however, they require many calculations and can be error-prone depending on the user, as decisions regarding various parameters are required. Furthermore, the spatial accuracy of this technique needs to be verified, as it has not been widely applied to hyperspectral imagery. The proposed technique resulted in an average reduction of spatial errors by 91.9%, compared to the case where the image registration technique was not applied, and by 78.7% compared to template matching.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2052
Author(s):  
Xinghai Yang ◽  
Fengjiao Wang ◽  
Zhiquan Bai ◽  
Feifei Xun ◽  
Yulin Zhang ◽  
...  

In this paper, a deep learning-based traffic state discrimination method is proposed to detect traffic congestion at urban intersections. The detection algorithm includes two parts, global speed detection and a traffic state discrimination algorithm. Firstly, the region of interest (ROI) is selected as the road intersection from the input image of the You Only Look Once (YOLO) v3 object detection algorithm for vehicle target detection. The Lucas-Kanade (LK) optical flow method is employed to calculate the vehicle speed. Then, the corresponding intersection state can be obtained based on the vehicle speed and the discrimination algorithm. The detection of the vehicle takes the position information obtained by YOLOv3 as the input of the LK optical flow algorithm and forms an optical flow vector to complete the vehicle speed detection. Experimental results show that the detection algorithm can detect the vehicle speed and traffic state discrimination method can judge the traffic state accurately, which has a strong anti-interference ability and meets the practical application requirements.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1951
Author(s):  
Yi Di Boon ◽  
Sunil Chandrakant Joshi ◽  
Somen Kumar Bhudolia

Fiber reinforced thermoplastic composites are gaining popularity in many industries due to their short consolidation cycles, among other advantages over thermoset-based composites. Computer aided manufacturing processes, such as filament winding and automated fiber placement, have been used conventionally for thermoset-based composites. The automated processes can be adapted to include in situ consolidation for the fabrication of thermoplastic-based composites. In this paper, a detailed literature review on the factors affecting the in situ consolidation process is presented. The models used to study the various aspects of the in situ consolidation process are discussed. The processing parameters that gave good consolidation results in past studies are compiled and highlighted. The parameters can be used as reference points for future studies to further improve the automated manufacturing processes.


2021 ◽  
Vol 263 ◽  
pp. 113677
Author(s):  
Hiroshi Suemasu ◽  
Yuichiro Aoki ◽  
Sunao Sugimoto ◽  
Toshiya Nakamura

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2602
Author(s):  
Huaqiao Wang ◽  
Jihong Chen ◽  
Zhichao Fan ◽  
Jun Xiao ◽  
Xianfeng Wang

Automated fiber placement (AFP) has been widely used as an advanced manufacturing technology for large and complex composite parts and the trajectory planning of the laying path is the primary task of AFP technology. Proposed in this paper is an experimental study on the effect of several different path planning placements on the mechanical behavior of laminated materials. The prepreg selected for the experiment was high-strength toughened epoxy resin T300 carbon fiber prepreg UH3033-150. The composite laminates with variable angles were prepared by an eight-tow seven-axis linkage laying machine. After the curing process, the composite laminates were conducted by tensile and bending test separately. The test results show that there exists an optimal planning path among these for which the tensile strength of the laminated specimens decreases slightly by only 3.889%, while the bending strength increases greatly by 16.68%. It can be found that for the specific planning path placement, the bending strength of the composite laminates is significantly improved regardless of the little difference in tensile strength, which shows the importance of path planning and this may be used as a guideline for future AFP process.


2008 ◽  
Vol 05 (03) ◽  
pp. 223-233 ◽  
Author(s):  
RONG LIU ◽  
MAX Q. H. MENG

Time-to-contact (TTC) provides vital information for obstacle avoidance and for the visual navigation of a robot. In this paper, we present a novel method to estimate the TTC information of a moving object for monocular mobile robots. In specific, the contour of the moving object is extracted first using an active contour model; then the height of the motion contour and its temporal derivative are evaluated to generate the desired TTC estimates. Compared with conventional techniques employing the first-order derivatives of optical flow, the proposed estimator is less prone to errors of optical flow. Experiments using real-world images are conducted and the results demonstrate that the developed method can successfully achieve TTC with an average relative error (ARVE) of 0.039 with a single calibrated camera.


Sign in / Sign up

Export Citation Format

Share Document