scholarly journals Automated Bacterial Classifications Using Machine Learning Based Computational Techniques: Architectures, Challenges and Open Research Issues

Author(s):  
Shallu Kotwal ◽  
Priya Rani ◽  
Tasleem Arif ◽  
Jatinder Manhas ◽  
Sparsh Sharma
Author(s):  
Benjamin M. Abdel-Karim ◽  
Nicolas Pfeuffer ◽  
Oliver Hinz

AbstractArtificial Intelligence (AI) and Machine Learning (ML) are currently hot topics in industry and business practice, while management-oriented research disciplines seem reluctant to adopt these sophisticated data analytics methods as research instruments. Even the Information Systems (IS) discipline with its close connections to Computer Science seems to be conservative when conducting empirical research endeavors. To assess the magnitude of the problem and to understand its causes, we conducted a bibliographic review on publications in high-level IS journals. We reviewed 1,838 articles that matched corresponding keyword-queries in journals from the AIS senior scholar basket, Electronic Markets and Decision Support Systems (Ranked B). In addition, we conducted a survey among IS researchers (N = 110). Based on the findings from our sample we evaluate different potential causes that could explain why ML methods are rather underrepresented in top-tier journals and discuss how the IS discipline could successfully incorporate ML methods in research undertakings.


IEEE Network ◽  
2019 ◽  
Vol 33 (4) ◽  
pp. 54-62 ◽  
Author(s):  
Fuhui Zhou ◽  
Guanyue Lu ◽  
Miaowen Wen ◽  
Ying-Chang Liang ◽  
Zheng Chu ◽  
...  

2021 ◽  
Vol 54 (6) ◽  
pp. 1-32
Author(s):  
El-Ghazali Talbi

During the past few years, research in applying machine learning (ML) to design efficient, effective, and robust metaheuristics has become increasingly popular. Many of those machine learning-supported metaheuristics have generated high-quality results and represent state-of-the-art optimization algorithms. Although various appproaches have been proposed, there is a lack of a comprehensive survey and taxonomy on this research topic. In this article, we will investigate different opportunities for using ML into metaheuristics. We define uniformly the various ways synergies that might be achieved. A detailed taxonomy is proposed according to the concerned search component: target optimization problem and low-level and high-level components of metaheuristics. Our goal is also to motivate researchers in optimization to include ideas from ML into metaheuristics. We identify some open research issues in this topic that need further in-depth investigations.


2020 ◽  
Author(s):  
Jingbai Li ◽  
Patrick Reiser ◽  
André Eberhard ◽  
Pascal Friederich ◽  
Steven Lopez

<p>Photochemical reactions are being increasingly used to construct complex molecular architectures with mild and straightforward reaction conditions. Computational techniques are increasingly important to understand the reactivities and chemoselectivities of photochemical isomerization reactions because they offer molecular bonding information along the excited-state(s) of photodynamics. These photodynamics simulations are resource-intensive and are typically limited to 1–10 picoseconds and 1,000 trajectories due to high computational cost. Most organic photochemical reactions have excited-state lifetimes exceeding 1 picosecond, which places them outside possible computational studies. Westermeyr <i>et al.</i> demonstrated that a machine learning approach could significantly lengthen photodynamics simulation times for a model system, methylenimmonium cation (CH<sub>2</sub>NH<sub>2</sub><sup>+</sup>).</p><p>We have developed a Python-based code, Python Rapid Artificial Intelligence <i>Ab Initio</i> Molecular Dynamics (PyRAI<sup>2</sup>MD), to accomplish the unprecedented 10 ns <i>cis-trans</i> photodynamics of <i>trans</i>-hexafluoro-2-butene (CF<sub>3</sub>–CH=CH–CF<sub>3</sub>) in 3.5 days. The same simulation would take approximately 58 years with ground-truth multiconfigurational dynamics. We proposed an innovative scheme combining Wigner sampling, geometrical interpolations, and short-time quantum chemical trajectories to effectively sample the initial data, facilitating the adaptive sampling to generate an informative and data-efficient training set with 6,232 data points. Our neural networks achieved chemical accuracy (mean absolute error of 0.032 eV). Our 4,814 trajectories reproduced the S<sub>1</sub> half-life (60.5 fs), the photochemical product ratio (<i>trans</i>: <i>cis</i> = 2.3: 1), and autonomously discovered a pathway towards a carbene. The neural networks have also shown the capability of generalizing the full potential energy surface with chemically incomplete data (<i>trans</i> → <i>cis</i> but not <i>cis</i> → <i>trans</i> pathways) that may offer future automated photochemical reaction discoveries.</p>


CrystEngComm ◽  
2021 ◽  
Author(s):  
Wancheng Yu ◽  
Can Zhu ◽  
Yosuke Tsunooka ◽  
Wei Huang ◽  
Yifan Dang ◽  
...  

This study proposes a new high-speed method for designing crystal growth systems. It is capable of optimizing large numbers of parameters simultaneously which is difficult for traditional experimental and computational techniques.


2017 ◽  
Vol 19 (3) ◽  
pp. 1457-1477 ◽  
Author(s):  
Shikhar Verma ◽  
Yuichi Kawamoto ◽  
Zubair Md. Fadlullah ◽  
Hiroki Nishiyama ◽  
Nei Kato

2014 ◽  
Vol 15 (9) ◽  
pp. 776-793 ◽  
Author(s):  
Han Qi ◽  
Muhammad Shiraz ◽  
Jie-yao Liu ◽  
Abdullah Gani ◽  
Zulkanain Abdul Rahman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document