Expanding electric vehicles lifetime in power electronic stage using an optimized fuzzy logic controller

Author(s):  
Pedro Ponce ◽  
Brian MacCleery ◽  
Luis A. Soriano ◽  
Manuel García ◽  
Víctor Leví ◽  
...  
Author(s):  
Aziz Boukadoum ◽  
Tahar Bahi ◽  
Youcef Soufi ◽  
Abla Bouguerne ◽  
Sofiane Oudina

Purpose – The use of power electronic equipment such as conventional AC-DC-AC converters cause several problems in electrical networks and its components. They generate harmonic currents and disturb the electrical power sources; so, it is necessary to research alternative topologies of power electronic converters based on advanced intelligent controllers, which reduce or even eliminate harmonics to achieve energy-saving and environmental protection. The use of matrix converter (MC) is, considered as an attractive solution to maintain pure sinusoidal input and output current waveforms. The paper aims to discuss this issue. Design/methodology/approach – The studied system is composed of a three phase matrix converter (TMC) feeding a linear R, L load and a trees phase rectifier considered as a non-linear load; the proposed control strategy is based on a fuzzy logic controller (FLC) associated to the (space vector modulation) SVM modulation technique, this choice is motivated by the advantages that represent the combination of FLC and SVM in term of power quality enhancement in both input and output sides of MC. Findings – The model is validated based on simulation results that illustrate the effectiveness of the proposed system in term of power quality amelioration. The high performance of the proposed FLC is illustrated in all study cases especially in the case of perturbed input voltage, it is not only able to keep the whole system stable, but also it reduces harmonic distortion THD to respect international standards recommendation. Originality/value – In this paper, an associated linear (RL), non-linear loads and TMC is studied. From the mathematical point of view, the MC is modeled and analyzed. From the technique point of view, the MC allows sinusoidal current absorbance from the network with good qualities in term of harmonic distortion compensation, and high reliability under various loads and disturbed input voltage.


2014 ◽  
Vol 20 (6) ◽  
Author(s):  
Wu Huangyuan ◽  
Wang Shuanghong ◽  
Shao Keran ◽  
Jianbo Sun

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Zhumu Fu ◽  
Aiyun Gao ◽  
Xiaohong Wang ◽  
Xiaona Song

This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV) by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE) with the state of charge (SOC) of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified ICE speed as inputs, and regarding the output torque demanded on the ICE as an output, a fuzzy logic controller (FLC) with relevant fuzzy rules has been developed to determine the optimal torque distribution among the ICE, the ISG, and the electric motor/generator (EMG) effectively. The simulation results reveal that, compared with the conventional torque control strategy which uses rule-based controller (RBC) in different driving cycles, the proposed FLC improves the fuel economy of the ISG-PHEV, increases the efficiency of the ICE, and maintains batteries SOC within its operation range more availably.


Sign in / Sign up

Export Citation Format

Share Document