scholarly journals Curcuma longa L. Prevents the Loss of β-Tubulin in the Brain and Maintains Healthy Aging in Drosophila melanogaster

Author(s):  
Md. Mashiar Rahman ◽  
Md. Abdullah Al Noman ◽  
Md. Walid Hossain ◽  
Rahat Alam ◽  
Selena Akter ◽  
...  

AbstractLoss of tubulin is associated with neurodegeneration and brain aging. Turmeric (Curcuma longa L.) has frequently been employed as a spice in curry and traditional medications in the Indian subcontinent to attain longevity and better cognitive performance. We aimed to evaluate the unelucidated mechanism of how turmeric protects the brain to be an anti-aging agent. D. melanogaster was cultured on a regular diet and turmeric-supplemented diet. β-tubulin level and physiological traits including survivability, locomotor activity, fertility, tolerance to oxidative stress, and eye health were analyzed. Turmeric showed a hormetic effect, and 0.5% turmeric was the optimal dose in preventing aging. β-tubulin protein level was decreased in the brain of D. melanogaster upon aging, while a 0.5% turmeric-supplemented diet predominantly prevented this aging-induced loss of β-tubulin and degeneration of physiological traits as well as improved β-tubulin synthesis in the brain of D. melanogaster early to mid-age. The higher concentration (≥ 1%) of turmeric-supplemented diet decreased the β-tubulin level and degenerated many of the physiological traits of D. melanogaster. The turmeric concentration-dependent increase and decrease of β-tubulin level were consistent with the increment and decrement data obtained from the evaluated physiological traits. This correlation demonstrated that turmeric targets β-tubulin and has both beneficial and detrimental effects that depend on the concentration of turmeric. The findings of this study concluded that an optimal dosage of turmeric could maintain a healthy neuron and thus healthy aging, by preventing the loss and increasing the level of β-tubulin in the brain.

GeroPsych ◽  
2012 ◽  
Vol 25 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Katja Franke ◽  
Christian Gaser

We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value. This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longitudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity. In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive functioning in the future.


2012 ◽  
Vol 32 (7) ◽  
pp. 1177-1187 ◽  
Author(s):  
Joel Aanerud ◽  
Per Borghammer ◽  
M Mallar Chakravarty ◽  
Kim Vang ◽  
Anders B Rodell ◽  
...  

Cerebral metabolic rate of oxygen consumption ( CMRO 2), cerebral blood flow ( CBF), and oxygen extraction fraction ( OEF) are important indices of healthy aging of the brain. Although a frequent topic of study, changes of CBF and CMRO 2 during normal aging are still controversial, as some authors find decreases of both CBF and CMRO 2 but increased OEF, while others find no change, and yet other find divergent changes. In this reanalysis of previously published results from positron emission tomography of healthy volunteers, we determined CMRO 2 and CBF in 66 healthy volunteers aged 21 to 81 years. The magnitudes of CMRO 2 and CBF declined in large parts of the cerebral cortex, including association areas, but the primary motor and sensory areas were relatively spared. We found significant increases of OEF in frontal and parietal cortices, excluding primary motor and somatosensory regions, and in the temporal cortex. Because of the inverse relation between OEF and capillary oxygen tension, increased OEF can compromise oxygen delivery to neurons, with possible perturbation of energy turnover. The results establish a possible mechanism of progression from healthy to unhealthy brain aging, as the regions most affected by age are the areas that are most vulnerable to neurodegeneration.


2021 ◽  
Vol 13 ◽  
Author(s):  
Hui Li ◽  
Junjun Ni ◽  
Hong Qing

The current trend for the rapid growth of the global aging population poses substantial challenges for society. The human aging process has been demonstrated to be closely associated with changes in gut microbiota composition, diversity, and functional features. During the first 2 years of life, the gut microbiota undergoes dramatic changes in composition and metabolic functions as it colonizes and develops in the body. Although the gut microbiota is nearly established by the age of three, it continues to mature until adulthood, when it comprises more stable and diverse microbial species. Meanwhile, as the physiological functions of the human body deteriorated with age, which may be a result of immunosenescence and “inflammaging,” the guts of elderly people are generally characterized by an enrichment of pro-inflammatory microbes and a reduced abundance of beneficial species. The gut microbiota affects the development of the brain through a bidirectional communication system, called the brain-gut-microbiota (BGM) axis, and dysregulation of this communication is pivotal in aging-related cognitive impairment. Microbiota-targeted dietary interventions and the intake of probiotics/prebiotics can increase the abundance of beneficial species, boost host immunity, and prevent gut-related diseases. This review summarizes the age-related changes in the human gut microbiota based on recent research developments. Understanding these changes will likely facilitate the design of novel therapeutic strategies to achieve healthy aging.


Gerontology ◽  
2018 ◽  
Vol 65 (2) ◽  
pp. 106-119 ◽  
Author(s):  
Helene Benveniste ◽  
Xiaodan Liu ◽  
Sunil Koundal ◽  
Simon Sanggaard ◽  
Hedok Lee ◽  
...  

The glymphatic system is a glial-dependent waste clearance pathway in the brain, in place of lymphatic vessels, dedicated to drain away soluble waste proteins and metabolic products. Specifically, the glymphatic network serves as a “front end” for waste clearance, and is connected downstream to an authentic lymphatic network, associated with dura covering the brain as well as cranial nerves and large vessels at the skull exits. The anatomical and functional interconnections between these two networks are not completely understood. Several key physiological processes have been identified that control glymphatic transport function and waste clearance from brain. In this review, we aim to provide an overview and discussion of the concept behind the glymphatic system, current evidence, and controversies, while specifically focusing on the consequences of aging and evidence of its existence in human brain. Discovering novel strategies for optimizing and maintaining efficient brain waste clearance across the lifespan may in the future prove to be important for preventing cognitive decline and sustaining healthy aging.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Zheng ◽  
Yang-mei Huang ◽  
Qiang Zhou

Recent studies have revealed significant contributions of lymphatic vessels (LVs) to vital functions of the brain, especially related to clearance of waste from the brain and immune responses in the brain. These studies collectively indicate that enhancing the functions of LVs may improve brain functions during brain aging and in Alzheimer’s disease (AD) where LV functions are impaired. However, it is currently unknown whether this enhancement can be achieved using small molecules. We have previously shown that a widely used Chinese herbal medicine Xueshuantong (XST) significantly improves functions and reduces pathology in AD transgenic mice associated with elevated cerebral blood flow (CBF). Here, we show that XST partially rescues deficits in lymphatic structures, improves clearance of amyloid-β (Aβ) from the brain, and reduces the inflammatory responses in the serum and brains of transgenic AD mice. In addition, we showed that this improvement in the lymphatic system occurs independently of elevated CBF, suggesting independent modulation and limited interaction between blood circulation and lymphatic systems. Moreover, XST treatment leads to a significant increase in GLT-1 level and a significantly lower level of MMP-9 and restores AQP4 polarity in APP/PS1 mice. These results provide the basis for further exploration of XST to enhance or restore LV functions, which may be beneficial to treat neurodegenerative diseases or promote healthy aging.


2020 ◽  
Vol 44 (3) ◽  
pp. 241-249
Author(s):  
Yoshiaki Omura

While a visiting Professor at the University of Paris, VI (formerly Sorvonne) more than 40 years ago, the Author became very good friends with Dr. Paul Nogier who periodically gave seminars and workshops in Paris. After the author diagnosed his cervical problem & offered him simple help, Dr. Nogier asked the Author to present lectures and demonstrations on the effects of ear stimulation, namely the effects of acupuncture & electrical stimulation of the ear lobules. It is only now, in 2019 that we have discovered 2–5 minute high frequency stimulation of the ear lobule inhibits cancer activity for 1– 4 hours post stimulation. Although the procedure is extremely simple. First take optimal dose of Vitamin D3, which has the most essential 10 unique beneficial factors required for every human cell activity. Next, apply high frequency stimulation to ear lobule while the worst ear lobule is held by all fingers with vibrator directly touching the surface of the worst ear lobule, preferably after patient repeatedly takes optimal dose of Vitamin D3. When the worst ear lobule is held between thumb & index fingers and applying mechanical stimulation of 250 ~ 500 mechanical vibration/second for 2 ~ 5 minutes using an electrical vibrator, there is rapid disappearance of cancer activity in both the brain and rest of the body for short time duration 1 ~ 4 hours. The effect often increases by additional pressure by holding fingers. As of May 2019, the Author found that many people from various regions of the world developed early stages of multiple cancers. For evaluation of this study, U. S. patented Bi-Digital O-Ring Test (BDORT) was used which was developed by the Author while doing his Graduate experimental physics research at Colombia University. BDORT was found to be most essential for determining the beneficial effects as well as harmful effects of any substance or treatment. Using BDORT, Author was the first to recognize severe increasing mid-backache was an early sign of pancreatic cancer of President of New York State Board of Medicine after top pain specialists failed to detect the cause after 3 years of effort, while the BDORT showed early stages of cancer whereas conventional X-Ray of the pancreas did not show any cancer image until 2 months after Author detected with BDORT. For example, the optimal dose of the banana is usually about 2.0 - 2.5 millimeters cross section of the banana. A whole banana is more than 50 ~ 100 times the optimal dose. Any substance eaten in more than 25 times of its optimal dose becomes highly toxic and creates DNA mutations which can cause multiple malignancies in the presence of strong electro-magnetic field. With standard medication given by doctor, patients often become sick and they are unable to reduce body weight, unless medication is reduced or completely stopped. When the amount of zinc is very high, DNA often becomes unstable and multiple cancers can grow rapidly in the presence of strong electromagnetic field. Large amount of Vitamin C from regular orange or orange juice inhibit the most important Vitamin D3 effects. At least 3 kinds of low Vitamin C oranges will not inhibit Vitamin D3. Since B12 particularly methyl cobalamin which is a red small tablet is known to improve brain circulation very significantly we examined its effect within 20 seconds of oral intake we found the following very significant changes. Acetylcholine in both sides of the brain often increases over 4,500 ng. Longevity gene Sirtuin 1 level increases significantly for short time of few hours. Thymosin α1 and Thymosinβ4 both increase to over 1500 ng from 20 ng or less.


2020 ◽  
Vol 23 (5) ◽  
pp. 402-410 ◽  
Author(s):  
Lin-Zi Li ◽  
Shan-Shan Lei ◽  
Bo Li ◽  
Fu-Chen Zhou ◽  
Ye-Hui Chen ◽  
...  

Aim and Objective: The Dendrobium officinalis flower (DOF) is popular in China due to common belief in its anti-aging properties and positive effects on “nourish yin”. However, there have been relatively few confirmatory pharmacological experiments conducted to date. The aim of this work was to evaluate whether DOF has beneficial effects on learning and memory in senescent rats, and, if so, to determine its potential mechanism of effect. Materials and Methods: SD rats were administrated orally DOF at a dose of 1.38, or 0.46 g/kg once a day for 8 weeks. Two other groups included a healthy untreated control group and a senescent control group. During the 7th week, a Morris water maze test was performed to assess learning and memory. At the end of the experiment, serum and brain samples were collected to measure concentrations of antioxidant enzymes, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GSH-Px) in serum, and the neurotransmitters, including γ-aminobutyric acid (γ-GABA), Glutamic (Glu), and monoamine oxidase B (MAO-B) in the brain. Histopathology of the hippocampus was assessed using hematoxylin-eosin (H&E) staining. Results: The results suggested that treatment with DOF improved learning as measured by escape latency, total distance, and target quadrant time, and also increased levels of γ-GABA in the brain. In addition, DOF decreased the levels of MDA, Glu, and MAO-B, and improved SOD and GSHPx. Histopathological analysis showed that DOF also significantly reduced structural lesions and neurodegeneration in the hippocampus relative to untreated senescent rats. Conclusion: DOF alleviated brain aging and improved the spatial learning abilities in senescent rats, potentially by attenuating oxidative stress and thus reducing hippocampal damage and balancing the release of neurotransmitters.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 152
Author(s):  
Camille Meslin ◽  
Françoise Bozzolan ◽  
Virginie Braman ◽  
Solenne Chardonnet ◽  
Cédric Pionneau ◽  
...  

Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids such as clothianidin. The residual accumulation of low concentrations of these insecticides can have positive effects on target pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction and olfactory synaptic transmission is cholinergic, neonicotinoid residues could indeed modify chemical communication. We recently showed that treatments with low doses of clothianidin could induce hormetic effects on behavioral and neuronal sex pheromone responses in the male moth, Agrotis ipsilon. In this study, we used high-throughput RNAseq and proteomic analyses from brains of A. ipsilon males that were intoxicated with a low dose of clothianidin to investigate the molecular mechanisms leading to the observed hormetic effect. Our results showed that clothianidin induced significant changes in transcript levels and protein quantity in the brain of treated moths: 1229 genes and 49 proteins were differentially expressed upon clothianidin exposure. In particular, our analyses highlighted a regulation in numerous enzymes as a possible detoxification response to the insecticide and also numerous changes in neuronal processes, which could act as a form of acclimatization to the insecticide-contaminated environment, both leading to enhanced neuronal and behavioral responses to sex pheromone.


Sign in / Sign up

Export Citation Format

Share Document