A Simple Visual Strategy for Protein Detection Based on Oxidase-Like Activity of Silver Nanoparticles

Author(s):  
Lei Liu ◽  
Liguo Zhang ◽  
Yong Liang
2018 ◽  
Vol 91 (3) ◽  
pp. 274-279 ◽  
Author(s):  
Mihai Flaviu Şuhani ◽  
Grigore Băciuţ ◽  
Mihaela Băciuţ ◽  
Raluca Şuhani ◽  
Simion Bran

Introduction: The key idea of nanotechnology is to construct and preserve functional structures by means of exploiting atoms and molecules. Nanotechnology has proven to be crucial in pharmacological medicine, tissue engineering, clinical diagnosis, long term conservation of biological tissues in a cryogenic state, protein detection, tumor destruction and magnetic resonance imaging.The aim of this paper is to review the literature on the specific characteristics of nanostructured materials, their applications and advantages that they bring to dentistry.Method. We conducted an electronic scientific database research that included PubMed, Cochrane and Medline. The following keywords were used: nanotechnology, nanodentistry and silver nanoparticles. Initially 1650 original articles were retrieved from the  these mentioned international databases, which were screened in detail. We included literature reviews that dealt with the comprehensive applications of nanostructured particles and silver nanoparticles in particular, in all fields of contemporary dentistry. Case reports, clinical trials, editorials and opinion letters were excluded in the first phase of our research. Fifty two articles met all the selection criteria and were ultimately selected and reviewed.Results. Nanotechnology deals with the production of various types of nanomaterials with potential applications in the field of biomedicine. Silver nanoparticles have the capacity to eliminate dental caries producing bacteria or repair teeth enamel with signs of dental decay. Nanodentistry will allow better oral health by use of nanostructured materials. Treatment opportunities that nanotechnology has to offer in contemporary dentistry include local anesthesia, permanent treatment of dental hypersensitivity, orthodontic and oral health care with nanorobotic dentifrice.Conclusion. The studies that we reviewed are largely in favor of nanotechnology and nanostructured materials, highlighting their qualities and enhancements they bring to the field of dentistry. Although many of these products that benefit from silver nanoparticles properties are still expensive and exclusive, we can foresee major improvements and demand regarding dental biomaterials with nanoparticles incorporated in the near future.


2011 ◽  
Vol 85 (2) ◽  
pp. 138-144 ◽  
Author(s):  
A. Nimrodh Ananth ◽  
S.C.G. Kiruba Daniel ◽  
T. Anitha Sironmani ◽  
S. Umapathi

2021 ◽  
Vol 85 (2) ◽  
pp. 127-132
Author(s):  
D. A. Gribanev ◽  
E. G. Zavyalova ◽  
A. S. Gambaryan ◽  
V. I. Kukushkin ◽  
E. V. Rudakova ◽  
...  

2019 ◽  
Vol 107 (3) ◽  
pp. 305
Author(s):  
Mengmei Geng ◽  
Yuting Long ◽  
Tongqing Liu ◽  
Zijuan Du ◽  
Hong Li ◽  
...  

Surface-enhanced Raman Scattering (SERS) fiber probe provides abundant interaction area between light and materials, permits detection within limited space and is especially useful for remote or in situ detection. A silver decorated SERS fiber optic probe was prepared by hydrothermal method. This method manages to accomplish the growth of silver nanoparticles and its adherence on fiber optic tip within one step, simplifying the synthetic procedure. The effects of reaction time on phase composition, surface plasmon resonance property and morphology were investigated by X-ray diffraction analysis (XRD), ultraviolet-visible absorption spectrum (UV-VIS absorption spectrum) and scanning electron microscope (SEM). The results showed that when reaction time is prolonged from 4–8 hours at 180 °C, crystals size and size distribution of silver nanoparticles increase. Furthermore, the morphology, crystal size and distribution density of silver nanoparticles evolve along with reaction time. A growth mechanism based on two factors, equilibrium between nucleation and growth, and the existence of PVP, is hypothesized. The SERS fiber probe can detect rhodamin 6G (R6G) at the concentration of 10−6 M. This SERS fiber probe exhibits promising potential in organic dye and pesticide residue detection.


Author(s):  
S. Rezaei-Zarchi ◽  
M. Taghavi-Foumani ◽  
S. Razavi Sheshdeh ◽  
M. Negahdary ◽  
G. Rahimi

Sign in / Sign up

Export Citation Format

Share Document