Analysis of high derivative thermoelastic properties of MgO

2012 ◽  
Vol 86 (4) ◽  
pp. 259-265 ◽  
Author(s):  
P. K. Singh
1979 ◽  
Vol 67 (2) ◽  
pp. 541-550 ◽  
Author(s):  
D.Sh. Tsagareishvili ◽  
G.V. Tsagareishvili

Aerospace ◽  
2005 ◽  
Author(s):  
Vinod P. Veedu ◽  
Davood Askari ◽  
Mehrdad N. Ghasemi-Nejhad

The objective of this paper is to develop constitutive models to predict thermoelastic properties of carbon single-walled nanotubes using analytical, asymptotic homogenization, and numerical, finite element analysis, methods. In our approach, the graphene sheet is considered as a non-homogeneous network shell layer which has zero material properties in the regions of perforation and whose effective properties are estimated from the solution of the appropriate local problems set on the unit cell of the layer. Our goal is to derive working formulas for the entire complex of the thermoelastic properties of the periodic network. The effective thermoelastic properties of carbon nanotubes were predicted using asymptotic homogenization method. Moreover, in order to verify the results of analytical predictions, a detailed finite element analysis is followed to investigate the thermoelastic response of the unit cells and the entire graphene sheet network.


1994 ◽  
Vol 49 (6) ◽  
pp. 663-670
Author(s):  
S. Sh. Soulayman ◽  
C. Ch. Marti ◽  
Ch. Ch. Guilpin

Abstract In this paper we apply the method developed in part I for describing the crystalline state of two and three dimensional inert gases. For strong anharmonicity of fourth order, the equations of state of these gases are obtained. This way we calculate the thermoelastic properties of two and three dimensional argon, krypton and xenon using the Lennard-Jones potential. The corrections to the Helmholtz free energy and thermodynamic properties due to quantum effects are considered. The results are compared with the available experimental data.


2018 ◽  
Vol 103 (10) ◽  
pp. 1568-1574 ◽  
Author(s):  
Xiaojing Lai ◽  
Feng Zhu ◽  
Jiachao Liu ◽  
Dongzhou Zhang ◽  
Yi Hu ◽  
...  

2006 ◽  
Vol 23 (8) ◽  
pp. S277-S285 ◽  
Author(s):  
M Alshourbagy ◽  
P Amico ◽  
L Bosi ◽  
G Cagnoli ◽  
E Campagna ◽  
...  

Author(s):  
E. Shikula

A model of deformation of multidirectional reinforcement fibrous materials with differently oriented fibers is proposed. The solution to the problem is built in two stages. At the first stage, the known properties of fibers and binder are used to determine the effective thermoelastic properties and stress-strain state of the subsystem with fibers oriented in a certain way relative to the main coordinate system. It is based on stochastic differential equations of the physically nonlinear theory of elasticity using the method of conditional moments. At the second stage, using a given distribution function based on the Voigt scheme, a model of deformation of the entire system is constructed from the calculated properties of the subsystems. Strain curves are obtained for simple loading, and the deformation of materials at uniform orientation of fibers is investigated. It was found that a fibrous composite material with differently oriented fibers in a macrovolume is isotropic, and its effective thermoelastic constants substantially depend on the volumetric content of fibers.


Sign in / Sign up

Export Citation Format

Share Document