scholarly journals Evaluation of the aerodynamic performance of the counter rotating turbo fan COBRA by means of experimental and numerical data

Author(s):  
Thibault Ly ◽  
Kazim Koc ◽  
Lionel Meillard ◽  
Rainer Schnell

AbstractIn the present study, steady numerical simulations performed on the counter rotating turbo fan (CRTF) COBRA are compared with experimental data carried at the CIAM C-3A test-bench in Moscow. For this purpose, a systematic analysis of the measurement uncertainties was performed for the global aerodynamic performances of the CRTF, namely, the massflow, the total pressure ratio, the isentropic efficiency, as well as the torque ratio applied on both fan rows. Several numerical models are investigated to highlight their effects on the aforementioned predicted quantities. Differences in modeling consist in grid resolutions and the use of two turbulence models popular in the turbomachinery community. To match as much as possible the experiment running conditions, the performance map of the CRTF is simulated using the exact measured speed ratio and massflow. The comparisons show good estimations of the numerical simulation over the entire performance map. The main differences between the turbulence models occur at part-speed close to stall conditions. More surprisingly at aerodynamic design point, the importance of the turbulence modeling on the predicted torque ratio has been pointed out.

Author(s):  
Mahmoud L. Mansour ◽  
John Gunaraj ◽  
Shraman Goswami

This paper summarizes the results of a validation and calibration study for two modern Computational Fluid Dynamics programs that are capable of modeling multistage axial compressors in a multi-blade row environment. The validation test case is a modern 4-stage high pressure ratio axial compressor designed and tested by Honeywell Aerospace in the late 90’s. The two CFD programs employ two different techniques for simulating the steady three-dimensional viscous flow field in a multistage/multiblade row turbo-machine. The first code, APNASA, was developed by NASA Glenn Research Center “GRC” and applies the approach by Adamczyk [1] for solving the average-passage equations which is a time and passage-averaged version of the Reynolds Averaged Navier Stokes (RANS) equations. The second CFD code is commercially marketed by ANSYS-CFX and applies a much simpler approach, known as the mixing-plane model, for combining the relative and the stationary frames of reference in a single steady 3D viscous simulation. Results from the two CFD programs are compared against the tested compressor’s overall performance data and against measured flow profiles at the leading edge of the fourth stator. The paper also presents a turbulence modeling sensitivity study aimed at documenting the sensitivity of the prediction of the flow field of such compressors to use of different turbulence closures such as the standard K-ε model, the Wilcox K-ω model and the Shear-Stress-Transport K-ω/SST turbulence model. The paper also presents results that demonstrate the CFD prediction sensitivity to modeling the compressor’s hub leakages from the inner-banded stator cavities. Comparison to the test data, using the K-ε turbulence closure, show that APNASA provides better accuracy in predicting the absolute levels of the performance characteristics. The presented results also show that better predictions by CFX can be obtained using the K-ω and the SST turbulence models. Modeling of the hub leakage flow was found to have significant and more than expected impact on the compressor predicted overall performance. The authors recommend further validation and evaluation for the modeling of the hub leakage flow to ensure realistic predictions for turbo-machinery performance.


Author(s):  
Lamyaa A. El-Gabry

A computational study has been performed to predict the heat transfer distribution on the blade tip surface for a representative gas turbine first stage blade. CFD predictions of blade tip heat transfer are compared to test measurements taken in a linear cascade, when available. The blade geometry has an inlet Mach number of 0.3 and an exit Mach number of 0.75, pressure ratio of 1.5, exit Reynolds number based on axial chord of 2.57×106, and total turning of 110 deg. Three blade tip configurations were considered; they are flat tip, a full perimeter squealer, and an offset squealer where the rim is offset to the interior of the tip perimeter. These three tip geometries were modeled at three tip clearances of 1.25, 2.0, and 2.75% of blade span. The tip heat transfer results of the numerical models agree fairly well with the data and are comparable to other CFD predictions in the open literature.


1995 ◽  
Vol 48 (4) ◽  
pp. 189-212 ◽  
Author(s):  
G. J. Brereton ◽  
R. R. Mankbadi

Turbulent flow which undergoes organized temporal unsteadiness is a subject of great importance to unsteady aerodynamic and thermodynamic devices. Of the many classes of unsteady flows, those bounded by rigid smooth walls are particularly amenable to fundamental studies of unsteady turbulence and its modeling. These flows are presently being given increased attention as interest grows in the prospect of predicting non-equilibrium turbulence and because of their relevance to turbulence–acoustics interactions, in addition to their importance as unsteady flows in their own right. It is therefore timely to present a review of recent advances in this area, with particular emphasis placed on physical understanding of the turbulent processes in these flows and the development of turbulence models to predict them. A number of earlier reviews have been published on unsteady turbulent flows, which have tended to focus on specific aspects of certain flows. This review is intended to draw together, from the diverse literature on the subject, information on fundamental aspects of these flows which are relevant to improved understanding and development of predictive models. Of particular relevance are issues of instability and transition to turbulence in reciprocating flows, the robustness of coherent structures in wall-bounded flows to forced perturbations (in contrast to the relative ease of manipulation in free shear flows), unsteady scalar transport, improved measurement technology, recent contributions to target data for model testing and the quasi-steady and non-steady rapid distortion approaches to turbulence modeling in these flows. The present article aims to summarize recent contributions to this research area, with a view to consolidating comprehension of the well-known basics of these flows, and drawing attention to critical gaps in information which restrict our understanding of unsteady turbulent flows.


2021 ◽  
Vol 2 (1) ◽  
pp. 17-23
Author(s):  
Subiyanto Subiyanto ◽  
Nira na Nirwa ◽  
Yuniarti Yuniarti ◽  
Yudi Nurul Ihsan ◽  
Eddy Afrianto

The purpose of this study was to determine the hydrodynamic conditions at Bojong Salawe beach. The method used in this research is a quantitative method, where numerical data is collected to support the formation of numerical models such as wind, bathymetry, and tide data. The hydrodynamic model will be made using Mike 21 with the Flow Model FM module to determine the current movement pattern based on the data used. In the west monsoon with a maximum instantaneous speed of 0.04 - 0.08 m/s, while in the east monsoon it moves with a maximum instantaneous speed of 0,4 – 0,44 m/s. The dominant direction of current movement tends to the northeast. The results indicate the current speed during the east monsoon is higher than the west monsoon. The difference in the current speed is also influenced by the tide conditions; higher during high tide and lower during low tide. Monsoons also have a role in the current movements, though the effect is not very significant.


2021 ◽  
Author(s):  
Daniel Ferreira Corrêa Barbosa ◽  
Daniel da Silva Tonon ◽  
Luiz Henrique Lindquist Whitacker ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti

Abstract The aim of this work is an evaluation of different turbulence models applied in Computational Fluid Dynamics (CFD) techniques in the turbomachinery area, in this case, in an axial turbine stage used in turbopump (TP) application. The tip clearance region was considered in this study because it has a high influence in turbomachinery performance. In this region, due to its geometry and the relative movement between the rotor row and casing, there are losses associated with vortices and secondary flow making the flowfield even more turbulent and complex. Moreover, the flow that leaks in the tip region does not participate in the energy transfer between the fluid and rotor blades, degradating the machine efficiency and performance. In this work, the usual flat tip rotor blade geometry was considered. The modeling of turbulent flow based on Reynolds Averaged Navier-Stokes (RANS) equations predicts the variation of turbine operational characteristics that is sufficient for the present turbomachine and flow analysis. Therefore, the appropriate choice of the turbulence model for the study of a given flow is essential to obtain adequate results using numerical approximations. This comparison become important due to the fact that there is no general turbulence model for all engineering applications that has fluid and flow. The turbomachine considered in the present work, is the first stage of the hydraulic axial turbine used in the Low Pressure Oxidizer Turbopump (LPOTP) of the Space Shuttle Main Engine (SSME), considering the 3.0% tip clearance configuration relative to rotor blade height. The turbulence models evaluated in this work were the SST (Shear Stress Transport), the k-ε Standard and the k-ε RNG. The computational domain was discretized in several control volumes based on unstructured mesh. All the simulations were performed using the commercial software developed by ANSYS, CFX v15.0 (ANSYS). All numerical settings and how the boundary conditions were imposed at different surfaces are explained in the work. The boundary conditions settings follow the same rule used in the test facility and needs some attention during the simulations to vary the Blade-Jet-Speed ratio parameter adequately. The results from numerical simulations, were synthesized and compared with the experimental data published by National Aeronautics and Space Administration (NASA), in which the turbine efficiency and its jet velocity parameter are analyzed for each turbulence model result. The work fluid considered in this work was water, the same fluid used in the NASA test facility.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 407
Author(s):  
Saule Maulenkul ◽  
Kaiyrbek Yerzhanov ◽  
Azamat Kabidollayev ◽  
Bagdaulet Kamalov ◽  
Sagidolla Batay ◽  
...  

The demand in solving complex turbulent fluid flows has been growing rapidly in the automotive industry for the last decade as engineers strive to design better vehicles to improve drag coefficients, noise levels and drivability. This paper presents the implementation of an arbitrary hybrid turbulence modeling (AHTM) approach in OpenFOAM for the efficient simulation of common automotive aerodynamics with unsteady turbulent separated flows such as the Kelvin–Helmholtz effect, which can also be used as an efficient part of aerodynamic design optimization (ADO) tools. This AHTM approach is based on the concept of Very Large Eddy Simulation (VLES), which can arbitrarily combine RANS, URANS, LES and DNS turbulence models in a single flow field depending on the local mesh refinement. As a result, the design engineer can take advantage of this unique and highly flexible approach to tailor his grid according to his design and resolution requirements in different areas of the flow field over the car body without sacrificing accuracy and efficiency at the same time. This paper presents the details of the implementation and careful validation of the AHTM method using the standard benchmark case of the Ahmed body, in comparison with some other existing models, such as RANS, URANS, DES and LES, which shows VLES to be the most accurate among the five examined. Furthermore, the results of this study demonstrate that the AHTM approach has the flexibility, efficiency and accuracy to be integrated with ADO tools for engineering design in the automotive industry. The approach can also be used for the detailed study of highly complex turbulent phenomena such as the Kelvin–Helmholtz instability commonly found in automotive aerodynamics. Currently, the AHTM implementation is being integrated with the DAFoam for gradient-based multi-point ADO using an efficient adjoint solver based on a Sparse Nonlinear optimizer (SNOPT).


2018 ◽  
Vol 45 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Jelena Svorcan ◽  
Ognjen Pekovic ◽  
Toni Ivanov

Although much employed, wind energy systems still present an open, contemporary topic of many research studies. Special attention is given to precise aerodynamic modeling performed in the beginning since overall wind turbine performances directly depend on blade aerodynamic performances. Several models different in complexity and computational requirements are still widely used. Most common numerical approaches include: i) momentum balance models, ii) potential flow methods and iii) full computational fluid dynamics solutions. Short explanations, reviews and comparison of the existing computational concepts are presented in the paper. Simpler models are described and implemented while numerous numerical investigations of isolated horizontal-axis wind turbine rotor consisting of three blades have also been performed in ANSYS FLUENT 16.2. Flow field is modeled by Reynolds Averaged Navier-Stokes (RANS) equations closed by two different turbulence models. Results including global parameters such as thrust and power coefficients as well as local distributions along the blade obtained by different models are compared to available experimental data. Presented results include fluid flow visualizations in the form of velocity contours, sectional pressure distributions and values of power and thrust force coefficients for a range of operational regimes. Although obtained numerical results vary in accuracy, all presented numerical settings seem to slightly under- or over-estimate the global wind turbine parameters (power and thrust force coefficients). Turbulence can greatly affect the wind turbine aerodynamics and should be modeled with care.


Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 144-150
Author(s):  
Vladislav Emelyanov ◽  
Aleksey Tsvetkov ◽  
Konstantin Volkov

Interest in the development of models and methods focused on the mechanisms of noise generation in jet flows is due to strict noise requirements produced by various industrial devices, as well as the possibilities of using sound in engineering and technological processes. The tools of physical and computational modeling of gas dynamics and aero-acoustics problems are considered, and noise sources and mechanisms of noise generation in supersonic jet flows are discussed. The physical pattern of the flow in free supersonic under-expanded jets is discussed on the basis of experimental and numerical data, as well as the flow structure arising from the interaction of a supersonic under-expanded jet with a cylindrical cavity. The influence of the nozzle pressure ratio and cavity depth on the sound pressure level, amplitude and frequency characteristics of the flow parameters is studied.


2015 ◽  
Author(s):  
Dmitry V. Nikushchenko ◽  
Anastasia A. Zubova

Provided within current research extensive numerical and theoretical investigations include real maneuvering condition cases when ship-to-ship interaction phenomena play a significant role. General methodology for hydrodynamic forces and moments’ results analysis and further application within the mathematical model of marine simulators is implemented. Real conditions cases include: ship wake flow interaction with the overtaking ship; interaction between ships; speeds and transverse distance variations. Numerical investigations are carried out with the use of Computational Fluid Dynamics (CFD) methods; analysis of numerical models is completed based on the CFD codes used widely. A significant part of research is devoted to the turbulence modeling focused on flow specifics.


Author(s):  
Leiyong Jiang

Based on the previous benchmark studies on combustion, scalar transfer and radiation models, a critical evaluation of turbulence models in a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers has been performed. Results obtained from six turbulence models are presented and compared in detail with a comprehensive database obtained from a series of experimental measurements. It is found that the Reynolds stress model (RSM), a second moment closure, is superior over the five popular eddy-viscosity two-equation models. Although the main flow patterns are captured by all six turbulence models, only the RSM is able to successfully predict the lengths of both recirculation zones and give fairly accurate predictions for mean velocity, temperature, CO2 and CO mole fractions, as well as turbulence kinetic energy in the combustor chamber. In addition, the realizable k-ε (Rk-ε) model illustrates better performance than four other two-equation models and can provide comparable results to those from the RSM for the configuration and operating conditions considered in the present study.


Sign in / Sign up

Export Citation Format

Share Document