CO2 adsorption on Cu-BTC to improve the quality of syngas produced from supercritical water gasification

Author(s):  
Mi Yan ◽  
Yan Zhang ◽  
Nurak Grisdanurak ◽  
Haryo Wibowo ◽  
Caimeng Yu ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2591 ◽  
Author(s):  
M. M. Sarafraz ◽  
Mohammad Reza Safaei ◽  
M. Jafarian ◽  
Marjan Goodarzi ◽  
M. Arjomandi

A thermodynamic assessment is conducted for a new configuration of a supercritical water gasification plant with a water–gas shift reactor. The proposed configuration offers the potential for the production of syngas at different H2:CO ratios for various applications such as the Fischer–Tropsch process or fuel cells, and it is a path for addressing the common challenges associated with conventional gasification plants such as nitrogen dilution and ash separation. The proposed concept consists of two reactors, R1 and R2, where the carbon containing fuel is gasified (in reactor R1) and in reactor R2, the quality of the syngas (H2:CO ratio) is substantially improved. Reactor R1 is a supercritical water gasifier and reactor R2 is a water–gas shift reactor. The proposed concept was modelled using the Gibbs minimization method with HSC chemistry software. Our results show that the supercritical water to fuel ratio (SCW/C) is a key parameter for determining the quality of syngas (molar ratio of H2:CO) and the carbon conversion reaches 100%, when the SWC/C ratio ranges between two and 2.5 at 500–1000 °C.


2020 ◽  
Vol 45 (29) ◽  
pp. 14744-14755 ◽  
Author(s):  
Wei Su ◽  
Changqing Cai ◽  
Ping Liu ◽  
Wei Lin ◽  
Baorui Liang ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 455
Author(s):  
Nikolaos Boukis ◽  
I. Katharina Stoll

Gasification of organic matter under the conditions of supercritical water (T > 374 °C, p > 221 bar) is an allothermal, continuous flow process suitable to convert materials with high moisture content (<20 wt.% dry matter) into a combustible gas. The gasification of organic matter with water as a solvent offers several benefits, particularly the omission of an energy-intensive drying process. The reactions are fast, and mean residence times inside the reactor are consequently low (less than 5 min). However, there are still various challenges to be met. The combination of high temperature and pressure and the low concentration of organic matter require a robust process design. Additionally, the low value of the feed and the product predestinate the process for decentralized applications, which is a challenge for the economics of an application. The present contribution summarizes the experience gained during more than 10 years of operation of the first dedicated pilot plant for supercritical water gasification of biomass. The emphasis lies on highlighting the challenges in process design. In addition to some fundamental results gained from comparable laboratory plants, selected experimental results of the pilot plant “VERENA” (acronym for the German expression “experimental facility for the energetic exploitation of agricultural matter”) are presented.


2019 ◽  
Vol 44 (47) ◽  
pp. 25365-25383 ◽  
Author(s):  
Leandro Ferreira-Pinto ◽  
Marcela Prado Silva Parizi ◽  
Paulo Cardozo Carvalho de Araújo ◽  
Andreia Fatima Zanette ◽  
Lucio Cardozo-Filho

2010 ◽  
Vol 14 (1) ◽  
pp. 334-343 ◽  
Author(s):  
Y. Guo ◽  
S.Z. Wang ◽  
D.H. Xu ◽  
Y.M. Gong ◽  
H.H. Ma ◽  
...  

2016 ◽  
Vol 117 ◽  
pp. 113-121 ◽  
Author(s):  
J. Reimer ◽  
G. Peng ◽  
S. Viereck ◽  
E. De Boni ◽  
J. Breinl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document