Ultrasonic-assisted acid and ionic liquid hydrolysis of microalgae for bioethanol production

Author(s):  
Niloofar Nasirpour ◽  
Omid Ravanshad ◽  
Seyyed Mohammad Mousavi
ACS Omega ◽  
2021 ◽  
Vol 6 (15) ◽  
pp. 10505-10505
Author(s):  
Yongmei Jiang ◽  
Sen Wang ◽  
Ming Yu ◽  
Di wu ◽  
Jie Lei ◽  
...  

2013 ◽  
Vol 127 ◽  
pp. 500-507 ◽  
Author(s):  
Reeta Rani Singhania ◽  
Anil Kumar Patel ◽  
Rajeev K. Sukumaran ◽  
Christian Larroche ◽  
Ashok Pandey

2017 ◽  
Vol 39 (4) ◽  
pp. 423 ◽  
Author(s):  
George Meredite Cunha de Castro ◽  
Norma Maria Barros Benevides ◽  
Maulori Curié Cabral ◽  
Rafael De Souza Miranda ◽  
Enéas Gomes Filho ◽  
...  

 The seaweeds are bio-resource rich in sulfated and neutral polysaccharides. The tropical seaweed species used in this study (Solieria filiformis), after dried, shows 65.8% (w/w) carbohydrate, 9.6% (w/w) protein, 1.7% (w/w) lipid, 7.0% (w/w) moisture and 15.9% (w/w) ash. The dried seaweed was easily hydrolyzed under mild conditions (0.5 M sulfuric acid, 20 min.), generating fermentable monosaccharides with a maximum hydrolysis efficiency of 63.21%. Galactose and glucose present in the hydrolyzed were simultaneously fermented by Saccharomyces cerevisiae when the yeast was acclimated to galactose and cultivated in broth containing only galactose. The kinetic parameters of the fermentation of the seaweed hydrolyzed were Y(P⁄S) = 0.48 ± 0.02 g.g−1, PP = 0.27 ± 0.04 g.L−1.h−1, h = 94.1%, representing a 41% increase in bioethanol productivity. Therefore, S. filiformis was a promising renewable resource of polysaccharides easily hydrolyzed, generating a broth rich in fermentable monosaccharides for ethanol production. 


2011 ◽  
Vol 85 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Furong Tao ◽  
Huanling Song ◽  
Jian Yang ◽  
Lingjun Chou

2011 ◽  
Vol 391-392 ◽  
pp. 1319-1323
Author(s):  
Cui Zheng ◽  
Lin Li ◽  
Hao Pang ◽  
Zhao Mei Wang ◽  
Na Li

It still remains challenging for effective hydrolysis of chitosan into chitosan oligomers. In this work, a pretreatment was conducted on chitosan by an ionic liquid 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), aiming at improving enzymatic depolymerization of chitosan. X-ray diffraction analysis indicated that the inter- and intra-molecular hydrogen bonds within chitosan molecules were broken by [C4mim]Cl and the crystalline was destroyed. The oligo-chitosan hydrolyzed from IL-pretreated chitosan, coded as COS-IL, showed a DP of 3~5, in contrast to DP 5~8 with oligo-chitosan obtained from untreated chitosan(coded as COS-UN). COS-IL was more effective than COS-UN in inhibiting intestinal spoilage bacterials growth and it has positive effect on the growth of intestinal probiotic bacterials.


2012 ◽  
Vol 59 (1) ◽  
Author(s):  
Ahmad Idi ◽  
Madihah Md. Salleh ◽  
Zaharah Ibrahim ◽  
Shaza Eva Mohamad

One of the major advantages of biofuel over fossil fuel is that it is environmentally friendly but unfortunately most of the chemicals used in the pretreatment of lignocelluloses biomass to produce biofuel can cause adverse effects to the environment. In this study, ionic liquid was used for the pretreatment of cocoa waste. Its effectiveness in the treatment process was compared to the alkalis and acids used in the conventional pretreatment media. The effectiveness of pretreatment using ionic liquid, H2SO4 and NaOH was based on the reduction of biomass, production of reducing sugar and also bioethanol. Ionic liquid pretreatment was found to show minimal biomass loss of only 31% after pretreatment compared to H2SO4 and NaOH which showed loss of 61% and 79% respectively. The untreated biomass has 10% amount of cellulose but upon pretreatment with ionic liquid, H2SO4 and NaOH, significant amount of cellulose was detected compared to NaOH which produced only 7% of cellulose. Two types of yeasts were also isolated from Malaysian local fermented food, the tapai ubi which were tested for the abilities to ferment the reducing sugar produced. Using the DNS method for determining reducing sugar, ionic liquid pretreatment was shown to produce 6.3×10–2g/L of reducing sugar while the untreated, H2SO4 and NaOH pretreatment produced 2.87×10–2g/L, 7.4×10–2g/L and 3.37×10–2g/L respectively at the end of 24 hours of incubation. Bioethanol produced during the fermentation was analysed using gas chromatography. Ionic liquid produced a total of 7.885g/L, H2SO4 produced 7.911g/L NaOH produced 6.824g/L and untreated cocoa waste produced 5.116g/L of ethanol at the end of 24 hours incubation.


Sign in / Sign up

Export Citation Format

Share Document