Effective degradation of amoxicillin using peroxymonosulfate activated with MWCNTs-CuNiFe2O4 as a new catalyst: optimization, degradation pathway, and toxicity assessment

Author(s):  
Abdolrasoul Rahmani ◽  
Nezamaddin Mengelizadeh ◽  
Mohammad Darvishmotevalli ◽  
Mehdi Salari ◽  
Maryam Moradnia ◽  
...  
2021 ◽  
Vol 45 (5) ◽  
pp. 2620-2630
Author(s):  
Mohammed F. El-Behairy ◽  
Rasha M. Ahmed ◽  
Marwa A. A. Fayed ◽  
Samar Mowafy ◽  
Inas A. Abdallah

Characterization of the degradation products of pharmaceutical drugs is essential to assess their safety.


2019 ◽  
Vol 26 (36) ◽  
pp. 37174-37192 ◽  
Author(s):  
Marta Gmurek ◽  
João F. Gomes ◽  
Rui C. Martins ◽  
Rosa M. Quinta-Ferreira

AbstractParabens (esters of p-hydroxybenzoic acid) are xenobiosis belonging to endocrine disruptors and commonly used as a preservative in cosmetics, food, pharmaceutical, and personal care products. Their wide use is leading to their appearance in water and wastewater in the range from ng/L to mg/L. In fact, the toxicity of benzylparaben is comparable to bisphenol A. Therefore, it is important to find not only effective but also ecofriendly methods for their removal from aqueous environment since the traditional wastewater treatment approaches are ineffective. Herein, for the first time, such extended comparison of several radical-driven technologies for paraben mixture degradation is presented. The detailed evaluation included (1) comparison of ozone and hydroxyl peroxide processes; (2) comparison of catalytic and photocatalytic processes (including photocatalytic ozonation); (3) characterisation of catalysts using SEM, XRD, DRS, XPS techniques and BET isotherm; (4) mineralisation, biodegradability and toxicity assessment; and (5) cost assessment. O3, H2O2/Fe2+, H2O2/UVC, O3/H2O2, O3/UVA, O3/H2O2/UVA, UVA/catalyst, O3/catalyst and O3/UVA/catalyst were selected from advanced oxidation processes to degrade parabens as well as to decrease its toxicity towards Aliivibrio fischeri, Corbicula fluminea and Lepidium sativum. Research was focused on the photocatalytic process involving visible light (UVA and natural sunlight) and TiO2 catalysts modified by different metals (Ag, Pt, Pd, Au). Photocatalytic oxidation showed the lowest efficiency, while in combining ozone with catalysis and photocatalysis process, degradation efficiency and toxicity removal were improved. Photocatalytic ozonation slightly improved degradation efficiency but appreciably decreased transferred ozone dose (TOD). Results indicate that the degradation pathway is different, or different transformation products (TPs) could be formed, despite that the hydroxyl radicals are the main oxidant.


2020 ◽  
Vol 395 ◽  
pp. 125090 ◽  
Author(s):  
Anhong Cai ◽  
Jing Deng ◽  
Mengyuan Xu ◽  
Tianxin Zhu ◽  
Shiqing Zhou ◽  
...  

2021 ◽  
Author(s):  
Haiyang Liu ◽  
Yihan Lv ◽  
Ya-nan Zhang ◽  
Yushu Zhang ◽  
Jiao Qu ◽  
...  

Abstract The residual antibiotics in different environmental media pose a serious threat to human health and the ecosystem. The high-efficient elimination of antibiotics is one of the foremost works. In this study, chloramphenicol (CAP) was eliminated efficiently by electrocatalytic advanced oxidation process with carbon nanotubes/agarose/indium tin oxide (CNTs/AG/ITO) electrode. The influences of different experimental parameters on the degradation efficiency were systematically studied. Under the optimal conditions (4 V potential, 10 wt% CNTs dosage, and pH = 10), the maximum degradation efficiency of CAP (20 mg L− 1) achieved 88% within 180 min. Besides, the electrocatalytic degradation pathway and mechanism for CAP were also investigated, •O2− played a major role in the process of electrocatalytic degradation. Based on the QSAR (quantitative structure-activity relationship) model, the toxicities of CAP and identified intermediates were analyzed. Compared with the parent compound, the maximal chronic toxicity of intermediate ((E)-3-(4-nitrophenyl)prop-1-ene-1,3-diol) for daphnid increased 197-fold. Besides, the hybrid toxicity of the degradation system was further confirmed via disk agar biocidal tests with Escherichia coli ATCC25922, which changed slightly during the degradation process. Based on the above results, it is worth noting that the degradation pathway and toxicity assessment should be paid more attention to the treatment of antibiotic wastewater.


Sign in / Sign up

Export Citation Format

Share Document