scholarly journals Bile acids increase intestinal marker expression via the FXR/SNAI2/miR-1 axis in the stomach

2021 ◽  
Vol 44 (5) ◽  
pp. 1119-1131
Author(s):  
Na Wang ◽  
Siran Wu ◽  
Jing Zhao ◽  
Min Chen ◽  
Jiaoxia Zeng ◽  
...  

Abstract Purpose Intestinal metaplasia (IM) is a precancerous lesion that increases the risk of subsequent gastric cancer (GC) development. Previously, miR-1 has been shown to play an essential role in the initiation of bile acid (BA)-induced IM. The objective of the present study was to investigate the mechanism underlying miR-1 inhibition by BA in gastric cells. Methods Ingenuity pathway analysis (IPA) was used to identify molecules acting upstream of miR-1. The effects of deoxycholic acid (DCA), FXR and SNAI2 on the expression of intestinal markers were assessed using quantitative real-time PCR (qRT-PCR) and Western blotting. The expression level of major molecules was detected by immunohistochemistry (IHC) in tissue microarrays. The transcriptional regulation of miR-1 was verified using luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Results We found that BA treatment caused aberrant expression of FXR and intestinal markers in gastric cells. Augmented FXR led to transcriptional activation of SNAI2, which in turn suppressed the miR-1 promoter. Moreover, we found that compared with normal tissues, the expression levels of both FXR and SNAI2 were increased and positively correlated with each other in IM tissues. Additionally, their expression showed an inverse correlation with that of miR-1 in IM tissues. Conclusions Our findings indicate that FXR may be responsible for a series of molecular changes in gastric cells after BA treatment, and that the FXR/SNAI2/miR-1 axis exhibits a crucial role in BA-induced progression of IM. Blocking the FXR-oriented axis may provide a promising approach for IM or even GC treatment.

2020 ◽  
Author(s):  
Na Wang ◽  
Min Chen ◽  
Jiaoxia Zeng ◽  
Guofang Lu ◽  
Jiaojiao Wang ◽  
...  

Abstract Background Intestinal metaplasia (IM) is a precancerous lesion that increases risk of subsequent gastric cancer (GC). However, factors governing the transformation from normal gastric epithelial cells to IM remain unclear. Previously, miR-1 turned out to play an essential role in the initiation of bile acids (BA)-induced IM. Here, we investigate the mechanism underlying miR-1 inhibition by BA in gastric cells. Methods We conducted IPA analysis to determine the potential molecular interacting BA with miR-1. The changes of FXR and SNAI2 after BA treatment were detected by western blot and qRT-PCR. IHC was performed to assess the expression level of FXR and SNAI2 in normal and IM tissue microarrays. The transcriptional regulation of SNAI2 or miR-1 was verified by bioinfamatics, luciferase reporter assay and chromatin immunoprecipitation PCR. Results BA treatment caused aberrant expression of FXR and IM markers in gastric cells. Augmented FXR led to the transcriptional activation of SNAI2 which further stimulates the expression of downstream IM markers. Bioinformatics analysis indicated that SNAI2 had miR-1 promoter binding region and we identified that SNAI2 negatively regulated miR-1 transcription. Both FXR and SNAI2 were increased in patients with IM. Conclusions This study demonstrated that FXR might be responsible for a series molecular changes in gastric cells after BA, and FXR/SNAI2/miR-1 axis exert a crucial role in BA-induced IM progression. Blocking the activation of the FXR-oriented axis may provide a promising approach for IM or even GC treatment.


2019 ◽  
Author(s):  
Haote Liang ◽  
Hang Huang ◽  
Yeping Li ◽  
Yongyong Lu ◽  
Tingyu Ye

Abstract Emerging evidences have uncovered critical regulatory roles of circular RNAs (circRNAs) function as dynamic scaffolding molecules in tumorigenesis and progression. However, the aberrant expression and clinical significance of hsa_circ_0058063 (circRNA_0058063) in bladder cancer (BC) remain poorly understood. circRNA expression was analyzed via a microarray in cancerous tissue and non-carcinoma tissues. Luciferase reporter assays and RNA immunoprecipitation (RIP) were both conducted to uncover the function of circRNA_0058063 in BC. circRNA_0058063 was overexpressed in BC tissues compared to adjacent normal tissues. Knockdown of circRNA_0058063 dramatically decreased cell proliferation and invasion, and promoted apoptosis in 5637 and BIU-87 cell lines. Furthermore, mechanistic investigations showed that circRNA_0058063 and FOXP4 could directly bind to miR-486-3p, demonstrating that circRNA_0058063 regulated FOXP4 expression by competitively binding to miR-486-3p. Taken together, circRNA_0058063 functions by sponging miR-486-3p in BC progression, which could be act as a new biomarker and further developed to be a therapeutic target in BC.


2019 ◽  
Author(s):  
Haote Liang ◽  
Hang Huang ◽  
Yeping Li ◽  
Yongyong Lu ◽  
Tingyu Ye

Abstract Emerging evidences have uncovered critical regulatory roles of circular RNAs (circRNAs) function as dynamic scaffolding molecules in tumorigenesis and progression. However, the aberrant expression and clinical significance of hsa_circ_0058063 (circRNA_0058063) in bladder cancer (BC) remain poorly understood. circRNA expression was analyzed via a microarray in cancerous tissue and non-carcinoma tissues. Luciferase reporter assays and RNA immunoprecipitation (RIP) were both conducted to uncover the function of circRNA_0058063 in BC. circRNA_0058063 was overexpressed in BC tissues compared to adjacent normal tissues. Knockdown of circRNA_0058063 dramatically decreased cell proliferation and invasion, and promoted apoptosis in 5637 and BIU-87 cell lines. Furthermore, mechanistic investigations showed that circRNA_0058063 and FOXP4 could directly bind to miR-486-3p, demonstrating that circRNA_0058063 regulated FOXP4 expression by competitively binding to miR-486-3p. Taken together, circRNA_0058063 functions by sponging miR-486-3p in BC progression, which could be act as a new biomarker and further developed to be a therapeutic target in BC.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Linda Schroeder ◽  
Christine Herwartz ◽  
Darko Jordanovski ◽  
Gertrud Steger

Activation of the interferon (IFN) pathway in response to infection with pathogens results in the induction of IFN-stimulated genes (ISGs) including proinflammatory cytokines, which mount the proper antiviral immune response. However, aberrant expression of these genes is pathogenic to the host. In addition to IFN-induced transcription factors non-IFN-regulated factors contribute to the transcriptional control of ISGs. Here, we show by genome wide expression analysis, siRNA-mediated suppression and Doxycycline-induced overexpression that the cellular transcription factor ZNF395 activates a subset of ISGs including the chemokines CXCL10 and CXCL11 in keratinocytes. We found that ZNF395 acts independently of IFN but enhances the IFN-induced expression of CXCL10 and CXCL11. Luciferase reporter assays revealed a requirement of intact NFκB-binding sites for ZNF395 to stimulate the CXCL10 promoter. The transcriptional activation of CXCL10 and CXCL11 by ZNF395 was abolished after inhibition of IKK by BMS-345541, which increased the stability of ZNF395. ZNF395 encodes at least two motifs that mediate the enhanced degradation of ZNF395 in response to IKK activation. Thus, IKK is required for ZNF395-mediated activation of transcription and enhances its turn-over to keep the activity of ZNF395 low. Our results support a previously unrecognized role of ZNF395 in the innate immune response and inflammation.


2020 ◽  
Vol 40 (3) ◽  
Author(s):  
Haote Liang ◽  
Hang Huang ◽  
Yeping Li ◽  
Yongyong Lu ◽  
Tingyu Ye

Abstract Emerging evidence has uncovered critical regulatory roles of circular RNAs (circRNAs) function as dynamic scaffolding molecules in tumorigenesis and progression. However, the aberrant expression and clinical significance of hsa_circ_0058063 (circRNA_0058063) in bladder cancer (BC) remain poorly understood. circRNA expression was analyzed via a microarray in cancerous tissue and non-carcinoma tissues. Luciferase reporter assays and RNA immunoprecipitation (RIP) were both conducted to uncover the function of circRNA_0058063 in BC. circRNA_0058063 was overexpressed in BC tissues compared with adjacent normal tissues. Knockdown of circRNA_0058063 dramatically decreased cell proliferation and invasion, and promoted apoptosis in 5637 and BIU-87 cell lines. Furthermore, mechanistic investigations showed that circRNA_0058063 and FOXP4 could directly bind to miR-486-3p, demonstrating that circRNA_0058063 regulated FOXP4 expression by competitively binding to miR-486-3p. Taken together, circRNA_0058063 functions by sponging miR-486-3p in BC progression, which could act as a new biomarker and further developed to be a therapeutic target in BC.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Dan Luo ◽  
Zheng Zhang ◽  
Zhao Zhang ◽  
Jia-Yue Li ◽  
Jian Cui ◽  
...  

miR-362 is a recently discovered member of the microRNA family, and it modulates a variety of physical activities and plays an important role in the occurrence and development of many tumors. However, the biological functions of hsa-miR-362-5p in non-small-cell lung carcinoma (NSCLC) are unknown. Transwell assay and colony formation were used to determine the migration, invasion, and proliferation of NSCLC cells in vitro. A subcutaneous tumor model in nude mice was established to detect NSCLC tumor growth in vivo. The direct binding of miR-362 to the 3′UTR of Semaphorin 3A (Sema3A) was confirmed by luciferase reporter assay. In this study, we found that the level of miR-362 was higher in NSCLC tissues than in adjacent normal tissues and that the level of miR-362 expression was also elevated in five NSCLC cell lines (A549, 95-D, H1299, H292, and H460) relative to a human normal lung epithelial cell line (BEAS2B). Furthermore, miR-362 promoted NSCLC cell invasion, migration, and colony formation in vitro and tumor formation in vivo. Next, we identified the miR-362 target gene Sema3A, which is significantly correlated with metastasis. Sema3A expression was increased in normal tissues relative to NSCLC tissues. This result is consistent with the fact that miR-362 expression is negatively correlated with Sema3A expression in clinical tissue samples and indicated that miR-362 can regulate Sema3A expression in NSCLC cells and consequently affect NSCLC invasion, migration, and colony formation. Taken together, these findings on the newly identified miR-362/Sema3A axis elucidate the molecular mechanism of NSCLC invasion and migration and could lead to a potential therapeutic target in NSCLC treatment.


Author(s):  
Chenwei Wang ◽  
Yadi Liao ◽  
Wei He ◽  
Hong Zhang ◽  
Dinglan Zuo ◽  
...  

Abstract Background Elafin is a serine protease inhibitor critical for host defence. We previously reported that Elafin was associated with the recurrence of early-stage hepatocellular carcinoma (HCC) after surgery. However, the exact role of Elafin in HCC remains obscure. Methods HCC tissue microarrays were used to investigate the correlation between Elafin expression and the prognosis of HCC patients. In vitro migration, invasion and wound healing assays and in vivo lung metastasis models were used to determine the role of Elafin in HCC metastasis. Mass spectrometry, co-immunoprecipitation, western blotting, and immunofluorescence staining assays were performed to uncover the mechanism of Elafin in HCC. Dual-luciferase reporter and chromatin immunoprecipitation assays were employed to observe the transcriptional regulation of Elafin. Results Elafin expression was frequently increased in HCC tissues compared to normal tissues, and high Elafin expression in HCC tissues was correlated with aggressive tumour phenotypes and a poor prognosis in HCC patients. Elafin dramatically enhanced the metastasis of HCC cells both in vitro and in vivo by interacting with EGFR and activating EGFR/AKT signalling. Moreover, Elafin attenuated the suppressive effects of erlotinib on HCC metastasis. Besides, Elafin was transcriptionally regulated by Sp1 in HCC cells. Clinically, Elafin expression was positively correlated with Sp1, Vimentin, and EGFR signalling in both our HCC tissue microarrays and TCGA database analysis. Conclusions Upregulation of Elafin by Sp1 enhanced HCC metastasis via EGFR/AKT pathway, and overexpression of Elafin attenuated the anti-metastatic effects of erlotinib, suggesting a valuable prognostic biomarker and therapeutic target for HCC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gang Wang ◽  
Fangzheng Zhou ◽  
Tong Ou ◽  
Haiyan Sun ◽  
Zhirui Shan ◽  
...  

Abstract Background Accumulating evidence indicates that dysregulation of miR-182-5p can serve as diagnostic and prognostic biomarkers for some cancers, whereas the role of miR-182-5p has not been explored in nasopharyngeal carcinoma (NPC). Our study aims to elucidate the biological function of miR-182-5p in NPC and the potential molecular mechanism involved. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine miR-182-5p expression in NPC primary tissues and cell lines. Immunohistochemistry (IHC) for ZFP36L1 was conducted in NPC samples. Western blot was used to evaluate protein expression in cell lines. A series of functional assays were carried out to evaluate the roles of miR-182-5p and ZFP36L1 in tumor development and progression of NPC. Bioinformatics tools and luciferase reporter assays were utilized to identify the potential mechanisms of action. Moreover, rescue experiments were applied to explore whether ZFP36L1 mediated the effects of miR-182-5p in NPC. Results Up-regulation of miR-182-5p was significantly associated with tumor development and poor prognosis in patients with NPC. Functional study demonstrated that miR-182-5p overexpression enhanced, whereas suppression of miR-182-5p impeded NPC cell proliferation, migration, tumorigenesis and metastasis. Mechanistically, miR-182-5p interacted with ZFP36L1 at two sites in its 3′ un-translated region (UTR) and repressed ZFP36L1 expression in NPC. Consistently, an inverse correlation was observed between the expression levels of miR-182-5p and ZFP36L1 using clinical NPC tissues, and down-regulation of ZFP36L1 in NPC predicts poor survival. Furthermore, overexpression of miR-182-5p in NPC was partly attributable to the transcriptional activation effect induced by hypoxia-inducible factor 1α (HIF-1α). Conclusions Our data suggests that miR-182-5p facilitates cell proliferation and migration in NPC through its ability to down-regulate ZFP36L1 expression, and that the HIF-1α/miR-182-5p/ZFP36L1 axis may serve as a novel therapeutic target in the management of NPC.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Qiudan Chen ◽  
Weifeng Wang ◽  
Shuying Chen ◽  
Xiaotong Chen ◽  
Yong Lin

AbstractRecently, pivotal functions of miRNAs in regulating common tumorigenic processes and manipulating signaling pathways in brain tumors have been recognized; notably, miR‐29a is closely associated with p53 signaling, contributing to the development of glioma. However, the molecular mechanism of the interaction between miR-29a and p53 signaling is still to be revealed. Herein, a total of 30 glioma tissues and 10 non-cancerous tissues were used to investigate the expression of miR‐29a. CCK-8 assay and Transwell assay were applied to identify the effects of miR-29a altered expression on the malignant biological behaviors of glioma cells in vitro, including proliferation, apoptosis, migration and invasion. A dual-luciferase reporter assay was used to further validate the regulatory effect of p53 or miR-29a on miR-29a or MDM2, respectively, at the transcriptional level. The results showed that miR-29a expression negatively correlated with tumor grade of human gliomas; at the same time it inhibited cell proliferation, migration, and invasion and promoted apoptosis of glioma cells in vitro. Mechanistically, miR-29a expression was induced by p53, leading to aberrant expression of MDM2 targeted by miR-29a, and finally imbalanced the activity of the p53-miR-29a-MDM2 feedback loop. Moreover, miR-29a regulating p53/MDM2 signaling sensitized the response of glioma cells to temozolomide treatment. Altogether, the study demonstrated a potential molecular mechanism in the tumorigenesis of glioma, while offering a possible target for treating human glioma in the future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bo Jia ◽  
Junfeng Dao ◽  
Jiusong Han ◽  
Zhijie Huang ◽  
Xiang Sun ◽  
...  

Abstract Background Tongue squamous cell carcinoma (TSCC) is one of the most common oral tumors. Recently, long intergenic noncoding RNA 00958 (LINC00958) has been identified as an oncogene in human cancers. Nevertheless, the role of LINC00958 and its downstream mechanisms in TSCC is still unknown. Methods The effect of LINC00958 on TSCC cells proliferation and growth were assessed by CCK-8, colony formation, 5-Ethynyl-2′-deoxyuridline (EdU) assay and flow cytometry assays in vitro and tumor xenograft model in vivo. Bioinformatics analysis was used to predict the target of LINC00958 in TSCC, which was verified by RNA immunoprecipitation and luciferase reporter assays. Results LINC00958 was increased in TSCC tissues, and patients with high LINC00958 expression had a shorter overall survival. LINC00958 knockdown significantly decreased the growth rate of TSCC cells both in vitro and in vivo. In mechanism, LINC00958 acted as a ceRNA by competitively sponging miR-211-5p. In addition, we identified CENPK as a direct target gene of miR-211-5p, which was higher in TSCC tissues than that in adjacent normal tissues. Up-regulated miR-211-5p or down-regulated CENPK could abolish LINC00958-induced proliferation promotion in TSCC cells. Furthermore, The overexpression of CENPK promoted the expression of oncogenic cell cycle regulators and activated the JAK/STAT3 signaling. Conclusions Our findings suggested that LINC00958 is a potential prognostic biomarker in TSCC.


Sign in / Sign up

Export Citation Format

Share Document