Preparation, characterization, and antibacterial properties of hybrid nanofibrous scaffolds for cutaneous tissue engineering

Human Cell ◽  
2021 ◽  
Author(s):  
Leila Mohammadzadeh ◽  
Mehrdad Mahkam ◽  
Abolfazl Barzegari ◽  
Abbas Karimi ◽  
Hossein Samadi Kafil ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Zhi-Cai Xing ◽  
Wan Meng ◽  
Jiang Yuan ◽  
Sungmo Moon ◽  
Yongsoo Jeong ◽  
...  

Flavonoids, such as quercetin, have been reported to exhibit a wide range of biological activities related to their antioxidant capacity. The aim of this study was to investigate the protective effect of quercetin on cell adhesion, and the viability and proliferation of KB epithelial cells. Quercetin- (1, 5 wt%)-containing poly (l-lactide-co-glycolide) (PLGA) nanofibrous scaffolds (PLGA/Q 1, PLGA/Q 5) were prepared by electrospinning technique and their antibacterial properties were examined. Two types of bacteria strains,Staphylococcus aureus(SA) andKlebsiella pneumoniae(KP), were used to evaluate the antibacterial properties of the scaffolds. The results showed that the quercetin-containing PLGA nanofibrous scaffolds exhibited significant antibacterial effects against the two bacterial strains. KB epithelial cells were also used to evaluate the cytocompatibility of the scaffolds. From the results, it was found that the PLGA nanofibrous scaffolds with 1 wt% of quercetin had good cell compatibility. It is considered that the PLGA nanofibrous scaffolds with 1 wt% quercetin have potential to be used in tissue engineering.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 353
Author(s):  
Yanting Han ◽  
Qianqian Wei ◽  
Pengbo Chang ◽  
Kehui Hu ◽  
Oseweuba Valentine Okoro ◽  
...  

Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.


2015 ◽  
Vol 3 (5) ◽  
pp. 859-870 ◽  
Author(s):  
Linhao Li ◽  
Yuna Qian ◽  
Chongwen Lin ◽  
Haibin Li ◽  
Chao Jiang ◽  
...  

Silk middle gland extracted sericin protein based electrospun nanofibrous scaffolds with excellent biocompatibility have been developed for tissue engineering applications.


2010 ◽  
Vol 95A (3) ◽  
pp. 870-881 ◽  
Author(s):  
Kuihua Zhang ◽  
Yongfang Qian ◽  
Hongsheng Wang ◽  
Linpeng Fan ◽  
Chen Huang ◽  
...  

Author(s):  
Seunghun S. Lee ◽  
Leanid Laganenka ◽  
Xiaoyu Du ◽  
Wolf-Dietrich Hardt ◽  
Stephen J. Ferguson

Silicon nitride (SiN [Si3N4]) is a promising bioceramic for use in a wide variety of orthopedic applications. Over the past decades, it has been mainly used in industrial applications, such as space shuttle engines, but not in the medical field due to scarce data on the biological effects of SiN. More recently, it has been increasingly identified as an emerging material for dental and orthopedic implant applications. Although a few reports about the antibacterial properties and osteoconductivity of SiN have been published to date, there have been limited studies of SiN-based scaffolds for bone tissue engineering. Here, we developed a silicon nitride reinforced gelatin/chitosan cryogel system (SiN-GC) by loading silicon nitride microparticles into a gelatin/chitosan cryogel (GC), with the aim of producing a biomimetic scaffold with antibiofilm and osteogenic properties. In this scaffold system, the GC component provides a hydrophilic and macroporous environment for cells, while the SiN component not only provides antibacterial properties and osteoconductivity but also increases the mechanical stiffness of the scaffold. This provides enhanced mechanical support for the defect area and a better osteogenic environment. First, we analyzed the scaffold characteristics of SiN-GC with different SiN concentrations, followed by evaluation of its apatite-forming capacity in simulated body fluid and protein adsorption capacity. We further confirmed an antibiofilm effect of SiN-GC against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as well as enhanced cell proliferation, mineralization, and osteogenic gene upregulation for MC3T3-E1 pre-osteoblast cells. Finally, we developed a bioreactor to culture cell-laden scaffolds under cyclic compressive loading to mimic physiological conditions and were able to demonstrate improved mineralization and osteogenesis from SiN-GC. Overall, we confirmed the antibiofilm and osteogenic effect of a silicon nitride reinforced cryogel system, and the results indicate that silicon nitride as a biomaterial system component has a promising potential to be developed further for bone tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document