scholarly journals Nutrigenetic comparison of two Varroa-resistant honey bee stocks fed pollen and spirulina microalgae

Apidologie ◽  
2021 ◽  
Author(s):  
Vincent A Ricigliano ◽  
Kate E Ihle ◽  
Steven T Williams

AbstractWe tested the influence of genetic variation on responses to natural and artificial diets in Varroa-resistant Pol-line and Russian honey bee stocks. Newly emerged workers from six colonies per stock were fed pollen, spirulina (blue-green microalgae), and sucrose-only diets in 144 total cages. Diet type had a strong effect on sugar intake, body weight, fat body lipid content, and vitellogenin (vg) expression. Spirulina consumption was approximately half that of pollen, but led to higher head weights, equivalent thorax weights and vg levels, and marginally reduced fat body lipids. Bee stock and colony had a significant impact on nutritional response. Despite equivalent diet intakes, Pol-line bees accumulated higher lipid levels and consumed less sugar overall than Russian bees. Furthermore, pollen-fed bees sourced from Pol-line colonies had significantly higher vg levels. These differences in nutrient and energy allocation may reflect life history-related physiological tradeoffs. Our results suggest that genotype-dependent nutritional responses are present in honey bees, with promising implications for breeding efforts and tailored approaches to diet and health in a changing global climate.

2005 ◽  
Vol 45 (12) ◽  
pp. 1659 ◽  
Author(s):  
D. C. Somerville

The use of solvent extraction or petroleum spirits to extract lipids (fats) from 172 samples of honey bee-collected pollens provided a range of lipid contents from 0% for Eucalyptus macrorhyncha to 11.2% for Hypochoeris radicata. The mean for all 172 samples, representing 61 species, was 2.52%. The mean from 31 endemic species was 1.78%, whereas the mean for 30 exotic species was 4.13%. When pollens from 1 species, Echium plantagineum, were extensively surveyed, the lipid levels could be predictably estimated, falling within a range of 0.6 to 2.46% and a mean of 1.6%. A number of pollens from particular species consistently showed high levels of lipids, which were observed to be highly favoured by foraging honey bees. The pollens noted to be particularly attractive to foraging honey bees included Brassica napus (mean 7.1%), Sisymbrium officinale (mean 5.8%), Rapistrum rugosum (mean 6%) and Hypochoeris radicata (mean 7.2%).


1986 ◽  
Vol 126 (1) ◽  
pp. 389-401
Author(s):  
D. A. Kuterbach ◽  
B. Walcott

The development of iron granules in honey-bee tissues was investigated using both anatomical and analytical methods. Iron granules are present only in the trophocytes of post-eclosion adults and have the same elemental composition as those in foraging adults. The granules increase in both size and number during ageing. Iron levels in developing worker honey-bees were measured by proton-induced X-ray emission spectroscopy. The rate of iron accumulation was directly related to iron levels in the diet, and the iron can be obtained from pollen and honey, both major food sources of the bee. In adults, the iron content of the fat body reached a maximum level (2.4 +/− 0.15 micrograms mg-1 tissue), regardless of the amount of iron available for ingestion. Maximal iron levels are reached at the time when honey-bee workers commence foraging behaviour, suggesting that iron granules may play a role in orientation. Alternatively, accumulation of iron in granules may be a method of maintaining iron homeostasis.


2020 ◽  
Vol 64 (4) ◽  
pp. 44-48
Author(s):  
R. Sabo ◽  
J. Legáth ◽  
M. Staroň ◽  
L. Sabová

AbstractThe current global climate warming trend leads to a shift in animal-habitats northwards. According to the Slovak Hydrometeorological Institute, summer 2018 was extremely hot and long throughout Slovakia. This was probably the fact that resulted in the detection of the presence of Megaselia spp. (Diptera: Phoridae) in one honeybee colony at the University apiary located in Rozhanovce (48° 46’ 27.24″ N; 21° 22’ 26.01″ E; eastern Slovakia). The first warning signal after opening the hive was the changed odour. During closer inspection, there were observed small parasitoid phorid larvae that emerged from the sealed bee brood; further examination revealed that the parasitized bee larvae and pupae contained emptied body cavities. Vice-versa, parasitisation was not detected in adult honey bees. Our knowledge of Diptera being responsible for parasitizing (even facultative) the honey bee (Apis mellifera) is still incomplete and needs to be investigated further in more details.


2007 ◽  
Vol 47 (7) ◽  
pp. 883 ◽  
Author(s):  
Rob Manning ◽  
Kate Lancaster ◽  
April Rutkay ◽  
Linda Eaton

The parasite, Nosema apis, was found to be widespread among feral populations of honey bees (Apis mellifera) in the south-west of Western Australia. The location, month of collection and whether the feral colony was enclosed in an object or exposed to the environment, all affected the presence and severity of infection. There was no significant difference in the probability of infection between managed and feral bees. However, when infected by N. apis, managed bees appeared to have a greater severity of the infection.


2021 ◽  
Vol 11 (14) ◽  
pp. 6481
Author(s):  
Marianna Martinello ◽  
Chiara Manzinello ◽  
Nicoletta Dainese ◽  
Ilenia Giuliato ◽  
Albino Gallina ◽  
...  

Member states of the European Union are required to ensure the initiation of monitoring programs to verify honey bee exposure to pesticides, where and as appropriate. Based on 620 samples of dead honey bees—42 of pollen, 183 of honey and 32 of vegetables—we highlighted the presence, as analyzed by liquid and gas chromatography coupled with tandem mass spectrometric detection, of many active substances, mainly tau-fluvalinate, piperonyl butoxide, chlorpyrifos and chlorpyrifos-methyl, permethrin and imidacloprid. Among the active substances found in analyzed matrices linked to honey bee killing incidents, 38 belong to hazard classes I and II, as methiocarb, methomyl, chlorpyrifos, cypermethrin and permethrin, thus representing a potential risk for human health. We have shown that, at different times between 2015 and 2020, during implementation of the Italian national guidelines for managing reports of bee colony mortality or depopulation associated with pesticide use, pesticide pollution events occurred that could raise concern for human health. Competent authorities could, as part of a One Health approach, exploit the information provided by existing reporting programs on honey bees and their products, in view of the close correlation to human health, animal health and ecosystem health.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 216
Author(s):  
Matthieu Guichard ◽  
Benoît Droz ◽  
Evert W. Brascamp ◽  
Adrien von Virag ◽  
Markus Neuditschko ◽  
...  

For the development of novel selection traits in honey bees, applicability under field conditions is crucial. We thus evaluated two novel traits intended to provide resistance against the ectoparasitic mite Varroa destructor and to allow for their straightforward implementation in honey bee selection. These traits are new field estimates of already-described colony traits: brood recapping rate (‘Recapping’) and solidness (‘Solidness’). ‘Recapping’ refers to a specific worker characteristic wherein they reseal a capped and partly opened cell containing a pupa, whilst ‘Solidness’ assesses the percentage of capped brood in a predefined area. According to the literature and beekeepers’ experiences, a higher recapping rate and higher solidness could be related to resistance to V. destructor. During a four-year field trial in Switzerland, the two resistance traits were assessed in a total of 121 colonies of Apis mellifera mellifera. We estimated the repeatability and the heritability of the two traits and determined their phenotypic correlations with commonly applied selection traits, including other putative resistance traits. Both traits showed low repeatability between different measurements within each year. ‘Recapping’ had a low heritability (h2 = 0.04 to 0.05, depending on the selected model) and a negative phenotypic correlation to non-removal of pin-killed brood (r = −0.23). The heritability of ‘Solidness’ was moderate (h2 = 0.24 to 0.25) and did not significantly correlate with resistance traits. The two traits did not show an association with V. destructor infestation levels. Further research is needed to confirm the results, as only a small number of colonies was evaluated.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Shilpi Bhatia ◽  
Saman S. Baral ◽  
Carlos Vega Melendez ◽  
Esmaeil Amiri ◽  
Olav Rueppell

Among numerous viruses that infect honey bees (Apis mellifera), Israeli acute paralysis virus (IAPV) can be linked to severe honey bee health problems. Breeding for virus resistance may improve honey bee health. To evaluate the potential for this approach, we compared the survival of IAPV infection among stocks from the U.S. We complemented the survival analysis with a survey of existing viruses in these stocks and assessing constitutive and induced expression of immune genes. Worker offspring from selected queens in a common apiary were inoculated with IAPV by topical applications after emergence to assess subsequent survival. Differences among stocks were small compared to variation within stocks, indicating the potential for improving honey bee survival of virus infections in all stocks. A positive relation between worker survival and virus load among stocks further suggested that honey bees may be able to adapt to better cope with viruses, while our molecular studies indicate that toll-6 may be related to survival differences among virus-infected worker bees. Together, these findings highlight the importance of viruses in queen breeding operations and provide a promising starting point for the quest to improve honey bee health by selectively breeding stock to be better able to survive virus infections.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Minjie Huang ◽  
Jie Dong ◽  
Haikun Guo ◽  
Minghui Xiao ◽  
Deqian Wang

Abstract Background Dinotefuran (CAS No. 165252–70-0), a neonicotinoid insecticide, has been used to protect various crops against invertebrate pests and has been associated with numerous negative sublethal effects on honey bees. Long noncoding RNAs (lncRNAs) play important roles in mediating various biological and pathological processes, involving transcriptional and gene regulation. The effects of dinotefuran on lncRNA expression and lncRNA function in the honey bee brain are still obscure. Results Through RNA sequencing, a comprehensive analysis of lncRNAs and mRNAs was performed following exposure to 0.01 mg/L dinotefuran for 1, 5, and 10 d. In total, 312 lncRNAs and 1341 mRNAs, 347 lncRNAs and 1458 mRNAs, and 345 lncRNAs and 1155 mRNAs were found to be differentially expressed (DE) on days 1, 5 and 10, respectively. Gene set enrichment analysis (GSEA) indicated that the dinotefuran-treated group showed enrichment in carbohydrate and protein metabolism and immune-inflammatory responses such as glycine, serine and threonine metabolism, pentose and glucuronate interconversion, and Hippo and transforming growth factor-β (TGF-β) signaling pathways. Moreover, the DE lncRNA TCONS_00086519 was shown by fluorescence in situ hybridization (FISH) to be distributed mainly in the cytoplasm, suggesting that it may serve as a competing endogenous RNA and a regulatory factor in the immune response to dinotefuran. Conclusion This study characterized the expression profile of lncRNAs upon exposure to neonicotinoid insecticides in young adult honey bees and provided a framework for further study of the role of lncRNAs in honey bee growth and the immune response.


2019 ◽  
Vol 112 (6) ◽  
pp. 2993-2996 ◽  
Author(s):  
Robyn Underwood ◽  
Brian Breeman ◽  
Joseph Benton ◽  
Jason Bielski ◽  
Julie Palkendo ◽  
...  

Abstract The spotted lanternfly, Lycorma delicatula, is an introduced plant hopper that causes significant damage to host plants in the United States. Because of its affinity for tree of heaven, Ailanthus altissima, control efforts have focused on the use of the systemic insecticide, dinotefuran, in designated trap trees. There is concern about exposure to this pesticide by non-target species, especially honey bees, Apis mellifera, via lanternfly honeydew. Therefore, honey bee colonies were established in areas of high densities of trap trees and samples of honey, bees, and beeswax were collected in May, July, and October of 2017 for analysis. Samples were extracted by the QuEChERS method and analyzed using high-performance liquid chromatography with tandem mass spectrometry to determine the presence and quantity of dinotefuran. Additionally, honeydew from lanternflies was analyzed for dinotefuran and informal observations of trap tree visitors were made. None of the worker bee, wax, or honey samples indicated detectable levels of dinotefuran; however, honeydew samples collected did contain dinotefuran above the detection limit with amounts ranging from 3 to 100 ng per sample. The lack of dinotefuran in honey bee products matches the general absence of honey bees at trap trees in informal observations.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e36285 ◽  
Author(s):  
Coby van Dooremalen ◽  
Lonne Gerritsen ◽  
Bram Cornelissen ◽  
Jozef J. M. van der Steen ◽  
Frank van Langevelde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document