scholarly journals Nanoparticle–Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xu Li ◽  
Bingyang Dai ◽  
Jiaxin Guo ◽  
Lizhen Zheng ◽  
Quanyi Guo ◽  
...  

AbstractOsteoarthritis is the most prevalent chronic and debilitating joint disease, resulting in huge medical and socioeconomic burdens. Intra-articular administration of agents is clinically used for pain management. However, the effectiveness is inapparent caused by the rapid clearance of agents. To overcome this issue, nanoparticles as delivery systems hold considerable promise for local control of the pharmacokinetics of therapeutic agents. Given the therapeutic programs are inseparable from pathological progress of osteoarthritis, an ideal delivery system should allow the release of therapeutic agents upon specific features of disorders. In this review, we firstly introduce the pathological features of osteoarthritis and the design concept for accurate localization within cartilage for sustained drug release. Then, we review the interactions of nanoparticles with cartilage microenvironment and the rational design. Furthermore, we highlight advances in the therapeutic schemes according to the pathology signals. Finally, armed with an updated understanding of the pathological mechanisms, we place an emphasis on the development of “smart” bioresponsive and multiple modality nanoparticles on the near horizon to interact with the pathological signals. We anticipate that the exploration of nanoparticles by balancing the efficacy, safety, and complexity will lay down a solid foundation tangible for clinical translation.

2010 ◽  
Vol 46 (3) ◽  
pp. 585-595 ◽  
Author(s):  
Gisele Rodrigues da Silva ◽  
Sílvia Ligório Fialho ◽  
Rubens Camargo Siqueira ◽  
Rodrigo Jorge ◽  
Armando da Silva Cunha Júnior

The treatment of diseases affecting the posterior segment of the eye is limited by the difficulty in transporting effective doses of drugs to the vitreous, retina, and choroid. Topically applied drugs are poorly absorbed due to the low permeability of the external ocular tissues and tearing. The blood-retina barrier limits drug diffusion from the systemic blood to the posterior segment, thus high doses of drug are needed to maintain therapeutic levels. In addition, systemic side effects are common. Intraocular injections could be an alternative, but the fast flowing blood supply in this region, associated with rapid clearance rates, causes drug concentration to quickly fall below therapeutic levels. To obtain therapeutic levels over longer time periods, polymeric sustained-drug release systems implanted within the vitreous are being studied for the treatment of vitreoretinal disorders. These systems are prepared using different kinds of biodegradable or non-biodegradable polymers. This review aims to demonstrate the main characteristics of these drug delivery implants and their potential for clinical application.


2020 ◽  
Vol 26 (33) ◽  
pp. 4174-4184
Author(s):  
Marina P. Abuçafy ◽  
Bruna L. da Silva ◽  
João A. Oshiro-Junior ◽  
Eloisa B. Manaia ◽  
Bruna G. Chiari-Andréo ◽  
...  

Nanoparticles as drug delivery systems and diagnostic agents have gained much attention in recent years, especially for cancer treatment. Nanocarriers improve the therapeutic efficiency and bioavailability of antitumor drugs, besides providing preferential accumulation at the target site. Among different types of nanocarriers for drug delivery assays, metal-organic frameworks (MOFs) have attracted increasing interest in the academic community. MOFs are an emerging class of coordination polymers constructed of metal nodes or clusters and organic linkers that show the capacity to combine a porous structure with high drug loading through distinct kinds of interactions, overcoming the limitations of traditional drug carriers explored up to date. Despite the rational design and synthesis of MOFs, structural aspects and some applications of these materials like gas adsorption have already been comprehensively described in recent years; it is time to demonstrate their potential applications in biomedicine. In this context, MOFs can be used as drug delivery systems and theranostic platforms due to their ability to release drugs and accommodate imaging agents. This review describes the intrinsic characteristics of nanocarriers used in cancer therapy and highlights the latest advances in MOFs as anticancer drug delivery systems and diagnostic agents.


2020 ◽  
Vol 21 (7) ◽  
pp. 628-646
Author(s):  
Gülcem Altinoglu ◽  
Terin Adali

Alzheimer’s disease (AD) is the most common neurodegenerative disease, and is part of a massive and growing health care burden that is destroying the cognitive function of more than 50 million individuals worldwide. Today, therapeutic options are limited to approaches with mild symptomatic benefits. The failure in developing effective drugs is attributed to, but not limited to the highly heterogeneous nature of AD with multiple underlying hypotheses and multifactorial pathology. In addition, targeted drug delivery to the central nervous system (CNS), for the diagnosis and therapy of neurological diseases like AD, is restricted by the challenges posed by blood-brain interfaces surrounding the CNS, limiting the bioavailability of therapeutics. Research done over the last decade has focused on developing new strategies to overcome these limitations and successfully deliver drugs to the CNS. Nanoparticles, that are capable of encapsulating drugs with sustained drug release profiles and adjustable physiochemical properties, can cross the protective barriers surrounding the CNS. Thus, nanotechnology offers new hope for AD treatment as a strong alternative to conventional drug delivery mechanisms. In this review, the potential application of nanoparticle based approaches in Alzheimer’s disease and their implications in therapy is discussed.


2020 ◽  
Vol 17 (10) ◽  
pp. 911-924
Author(s):  
Rohitas Deshmukh

Colon cancer is one of the most prevalent diseases, and traditional chemotherapy has not been proven beneficial in its treatment. It ranks second in terms of mortality due to all cancers for all ages. Lack of selectivity and poor biodistribution are the biggest challenges in developing potential therapeutic agents for the treatment of colon cancer. Nanoparticles hold enormous prospects as an effective drug delivery system. The delivery systems employing the use of polymers, such as chitosan and pectin as carrier molecules, ensure the maximum absorption of the drug, reduce unwanted side effects and also offer protection to the therapeutic agent from quick clearance or degradation, thus allowing an increased amount of the drug to reach the target tissue or cells. In this systematic review of published literature, the author aimed to assess the role of chitosan and pectin as polymer-carriers in colon targeted delivery of drugs in colon cancer therapy. This review summarizes the various studies employing the use of chitosan and pectin in colon targeted drug delivery systems.


2020 ◽  
Vol 17 (5) ◽  
pp. 438-446 ◽  
Author(s):  
Yuanyuan Li ◽  
Mohammad Ishraq Zafar ◽  
Xiaotong Wang ◽  
Xiaofang Ding ◽  
Honggang Li

Aim: To investigate the application of Scrotal Heat Stress (SHS) and Pulsed Unfocused Ultrasound (PuFUS) to explore Blood-Testis Barrier (BTB) permeability in adult mice. Background: The BTB provides a stable microenvironment and a unique immune barrier for spermatogenesis. Meanwhile, it blocks macromolecular substances access, including therapeutic agents and antibodies, thereby it decreases the therapeutic or immunocontraception effects. Objectives: To determine the viability of these physical approaches in delivering macromolecular substances into seminiferous tubules. Material & Methods: Mice were subjected to receive single SHS intervention at 39°C, 41°C, or 43°C for 30 min. Whereas, mice received the PuFUS intervention at 1.75w/cm2, 1.25w/cm2, and 2.5w/cm2 for 2 min, 5 min, and 10 min, respectively. The Biotin and macromolecular substances (IgG, IgM, and exosomes) were separately injected into the testicular interstitium at different times following SHS or PuFUS interventions, to observe their penetration through BTB into seminiferous tubules. Results: As detected by Biotin tracer, the BTB opening started from day-2 following the SHS and lasted for more than three days, whereas the BTB opening started from 1.5h following PuFUS and lasted up to 24h. Apparent penetration of IgG, IgM, and exosomes into seminiferous tubules was observed after five days of the SHS at 43°C, but none at 39°C, or any conditions tested with PuFUS. Conclusion: The current results indicate that SHS at 43°C comparatively has the potential for delivering macromolecular substances into seminiferous tubules, whereas the PuFUS could be a novel, quick, and mild approach to open the BTB. These strategies might be useful for targeted drug delivery into testicular seminiferous tubules. However, further studies are warranted to validate our findings.


2020 ◽  
Vol 22 (1) ◽  
pp. 123-135 ◽  
Author(s):  
Yalda Khazaei-poul ◽  
Shohreh Farhadi ◽  
Sepideh Ghani ◽  
Safar Ali Ahmadizad ◽  
Javad Ranjbari

: Peptides are considered to be appropriate tools in various biological fields. They can be primarily used for the rational design of bioactive molecules. They can act as ligands in the development of targeted therapeutics as well as diagnostics, can be used in the design of vaccines or can be employed in agriculture. Peptides can be classified in two broad structural classes: linear and cyclic peptides. Monocyclic peptides are a class of polypeptides with one macrocyclic ring that bears advantages, such as more selective binding and uptake by the target receptor, as well as higher potency and stability compared to linear types. This paper provides an overview of the categories, synthesis methods and various applications of cyclic peptides. The various applications of cyclic peptides include their use as pro-apoptotic and anti-microbial agents, their application as targeting ligands in drug delivery and diagnostic agents, as well as agricultural and therapeutics applications that are elaborated and discussed in this paper.


2021 ◽  
pp. 153537022110107
Author(s):  
Noah Trac ◽  
Eun Ji Chung

The lymph nodes are major sites of cancer metastasis and immune activity, and thus represent important clinical targets. Although not as well-studied compared to subcutaneous administration, intravenous drug delivery is advantageous for lymph node delivery as it is commonly practiced in the clinic and has the potential to deliver therapeutics systemically to all lymph nodes. However, rapid clearance by the mononuclear phagocyte system, tight junctions of the blood vascular endothelium, and the collagenous matrix of the interstitium can limit the efficiency of lymph node drug delivery, which has prompted research into the design of nanoparticle-based drug delivery systems. In this mini review, we describe the physiological and biological barriers to lymph node targeting, how they inform nanoparticle design, and discuss the future outlook of lymph node targeting.


Author(s):  
Yanlong Zhang ◽  
Yunjian Yu ◽  
Gang Li ◽  
Xinge Zhang ◽  
Zhongming Wu ◽  
...  

Eye-drop formulations as conventional regiments to tackle ocular diseases are far from efficient due to the rapid clearance by eye tears and blockage of corneal epithelium barrier. Here, we describe...


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1108
Author(s):  
Oana Craciunescu ◽  
Madalina Icriverzi ◽  
Paula Ecaterina Florian ◽  
Anca Roseanu ◽  
Mihaela Trif

Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.


Sign in / Sign up

Export Citation Format

Share Document