scholarly journals Finite Element Analysis of a Novel Anatomical Locking Guide Plate for Anterior Column and Posterior Hemi-Transverse Acetabular Fractures

Author(s):  
Junhao Deng ◽  
Ming Li ◽  
Jiantao Li ◽  
Zhirui Li ◽  
Fanqi Meng ◽  
...  

Abstract Purpose The increasing worldwide prevalence of anterior column-posterior hemi-transverse fracture (ACPHTF) brings formidable challenges to orthopaedic surgeons. Our newly-designed locking plate had previously demonstrated promising effects in ACPHTF, but evidence of their direct comparison with conventional internal fixations remains lacking. In this study, we aimed to compare our novel plate with the traditional devices via finite element analysis. Methods The ACPHTF model was created based on a 48-year-old volunteer’s CT data, and then fixed in three different internal fixations: an anterior column locking plate with posterior column screws, double column locking plates, and our novel anatomical locking plate. These models were next loaded with a downward vertical force of 200 N, 400 N and 600 N, and the stress peaks and displacements of three different sites were recorded and analyzed. Results We first tested the rigidity and found that our newly-designed locking plate as well as its matched screws had a greater stiffness especially when they were under a higher loading force of 600 N. Then we evaluated the displacements of fracture ends after applying these fixations. Both our novel plate and DLP showed significantly smaller displacement than LPPCS at the anterior column fracture line and the pubic branch fracture line, while our novel plate was not obviously inferior to DLP in terms of the displacement. Conclusion This novel plate demonstrates a distinct superiority in the stiffness over LPPCS and DLP and comparable displacements to DLP in ACPHTF, which suggests this novel anatomical locking guide plate should be taken into consideration in ACPHTF.

2019 ◽  
Vol 17 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Hafida Kahoul ◽  
Samira Belhour ◽  
Ahmed Bellaouar ◽  
Jean Paul Dron

Purpose This paper aims to present the fatigue life behaviour of upper arm suspension. The main objectives are to predict the fatigue life of the component and to identify the critical location. In this analysis, three aluminium alloys were used for the suspension, and their fatigue life was compared to select the suitable material for the suspension arm. Design/methodology/approach CAD model was prepared using Solid Works software, and finite element analysis was done using ANSYS 14.0 software by importing the Parasolid file to ANSYS. The model is subjected to loading and boundary conditions; the authors consider a vertical force with constant amplitude applied at the bushing that connected to the tire, the others two bushing that connected to the body of the car are constraint. Tetrahedral elements given enhanced results as compared to other types of elements; therefore, the elements (TET 10) are used. The maximum principal stress was considered in the linear static analysis, and fatigue analysis was done using strain life approach. Findings Life and damage are evaluated and the critical location was considered at node 63,754. From the fatigue analysis, aluminium alloys 7175-T73 (Al 90%-Zn 5.6%-Mg 2.5% -… …) and 2014-T6 (Al 93.5%-Cu 4.4%-Mg 0.5%… …) present a similar behaviour as compared to 6061-T6 (Al 97.9%-Mg 1.0%-Si 0.6%… … .); in this case of study, these lather are considered to be the materials of choice to manufacture the suspension arms; but 7175-T73 aluminium alloys remain the material with a better resistance to fatigue. Originality/value By the finite element analysis method and assistance of ANSYS software, it is able to analyse the different car components from varied aspects such as fatigue, and consequently save time and cost. For further research, the experimental works under controlled laboratory conditions should be done to determine the validation of the result from the software analysis.


Injury ◽  
2015 ◽  
Vol 46 ◽  
pp. S29-S35 ◽  
Author(s):  
Ahmet Ozgur Yildirim ◽  
Kadir Bahadir Alemdaroglu ◽  
Halil Yalcin Yuksel ◽  
Özdamar Fuad Öken ◽  
Ahmet Ucaner

2019 ◽  
Vol 45 (2) ◽  
pp. 100-105 ◽  
Author(s):  
Mitsuharu Nagao ◽  
Chihiro Masaki ◽  
Mihoko Nakao ◽  
Yoshinori Ito ◽  
Shintaro Tsuka ◽  
...  

To perform safe implant treatment, the anatomical structure and bone quality at implant placement sites are evaluated based on a patient's computerized tomography (CT) data, but there is no definite method to determine placement sites and the appropriate number of implants. The objective of this study was to investigate the influence of the number and arrangement of implants on the stress distribution in 3-unit posterior fixed partial dentures for the posterior mandible by mechanical analysis using the finite element method. Three-dimensional finite element analysis models were constructed from the CT data of a patient with missing mandibular teeth (Nos. 35, 36, 37). Implant placement was simulated under various conditions. Superstructures were connected and fixed with a titanium frame. As the loading conditions, 400 N vertical and lateral loads (45° on the lingual side and 45° on the buccal side) were applied to the upper areas of Nos. 35, 36, and 37, and the stress distribution and frame displacement were evaluated. When a vertical force was applied, no difference of the von Mises stress was noted among the 5 experimental conditions. When lateral force was applied from the lingual and buccal sides at 45°, the stress was higher than that induced by vertical force under all conditions, and it was especially high under mesial and distal cantilever conditions. When displacement of the titanium frame was measured, the displacement caused by lateral force was greater than that due to vertical force. In addition, comparison between long and short distal cantilever bridges revealed that displacement of the titanium frame tended to be smaller when the short cantilever was used. These findings suggested that the stress on peri-implant tissues and displacement of the titanium frame vary depending on the configuration and number of implants, with greater stress and more marked displacement of the titanium frame being induced by lateral force when the number of implants is reduced and a cantilever bridge is selected.


2010 ◽  
Vol 43 (8) ◽  
pp. 1635-1639 ◽  
Author(s):  
Vickie Shim ◽  
Jörg Böhme ◽  
Peter Vaitl ◽  
Stefan Klima ◽  
Christoph Josten ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document