Application of deep-learning reconstruction algorithm for enhanced CT scan of upper abdomen under different radiation doses: focus on noise, contrast-to-noise ratio and image quality

Author(s):  
Yanrong Xie ◽  
Yuan-Cheng Wang ◽  
Shan Huang ◽  
Shenghong Ju
2021 ◽  
pp. 028418512110358
Author(s):  
Aurélien Delabie ◽  
Roger Bouzerar ◽  
Raphaël Pichois ◽  
Xavier Desdoit ◽  
Jérémie Vial ◽  
...  

Background Patients with urolithiasis undergo radiation overexposure from computed tomography (CT) scans. Improvement of image reconstruction is necessary for radiation dose reduction. Purpose To evaluate a deep learning-based reconstruction algorithm for CT (DLIR) in the detection of urolithiasis at low-dose non-enhanced abdominopelvic CT. Material and Methods A total of 75 patients who underwent low-dose abdominopelvic CT for urolithiasis were retrospectively included. Each examination included three reconstructions: DLIR; filtered back projection (FBP); and hybrid iterative reconstruction (IR; ASiR-V 70%). Image quality was subjectively and objectively assessed using attenuation and noise measurements in order to calculate the signal-to-noise ratio (SNR), absolute contrast, and contrast-to-noise ratio (CNR). Attenuation of the largest stones were also compared. Detectability of urinary stones was assessed by two observers. Results Image noise was significantly reduced with DLIR: 7.2 versus 17 and 22 for ASiR-V 70% and FBP, respectively. Similarly, SNR and CNR were also higher compared to the standard reconstructions. When the structures had close attenuation values, contrast was lower with DLIR compared to ASiR-V. Attenuation of stones was also lowered in the DLIR series. Subjective image quality was significantly higher with DLIR. The detectability of all stones and stones >3 mm was excellent with DLIR for the two observers (intraclass correlation [ICC] = 0.93 vs. 0.96 and 0.95 vs. 0.99). For smaller stones (<3 mm), results were different (ICC = 0.77 vs. 0.86). Conclusion For low-dose abdominopelvic CT, DLIR reconstruction exhibited image quality superior to ASiR-V and FBP as well as an excellent detection of urinary stones.


2021 ◽  
pp. 197140092110087
Author(s):  
Andrea De Vito ◽  
Cesare Maino ◽  
Sophie Lombardi ◽  
Maria Ragusi ◽  
Cammillo Talei Franzesi ◽  
...  

Background and purpose To evaluate the added value of a model-based reconstruction algorithm in the assessment of acute traumatic brain lesions in emergency non-enhanced computed tomography, in comparison with a standard hybrid iterative reconstruction approach. Materials and methods We retrospectively evaluated a total of 350 patients who underwent a 256-row non-enhanced computed tomography scan at the emergency department for brain trauma. Images were reconstructed both with hybrid and model-based iterative algorithm. Two radiologists, blinded to clinical data, recorded the presence, nature, number, and location of acute findings. Subjective image quality was performed using a 4-point scale. Objective image quality was determined by computing the signal-to-noise ratio and contrast-to-noise ratio. The agreement between the two readers was evaluated using k-statistics. Results A subjective image quality analysis using model-based iterative reconstruction gave a higher detection rate of acute trauma-related lesions in comparison to hybrid iterative reconstruction (extradural haematomas 116 vs. 68, subdural haemorrhages 162 vs. 98, subarachnoid haemorrhages 118 vs. 78, parenchymal haemorrhages 94 vs. 64, contusive lesions 36 vs. 28, diffuse axonal injuries 75 vs. 31; all P<0.001). Inter-observer agreement was moderate to excellent in evaluating all injuries (extradural haematomas k=0.79, subdural haemorrhages k=0.82, subarachnoid haemorrhages k=0.91, parenchymal haemorrhages k=0.98, contusive lesions k=0.88, diffuse axonal injuries k=0.70). Quantitatively, the mean standard deviation of the thalamus on model-based iterative reconstruction images was lower in comparison to hybrid iterative one (2.12 ± 0.92 vsa 3.52 ± 1.10; P=0.030) while the contrast-to-noise ratio and signal-to-noise ratio were significantly higher (contrast-to-noise ratio 3.06 ± 0.55 vs. 1.55 ± 0.68, signal-to-noise ratio 14.51 ± 1.78 vs. 8.62 ± 1.88; P<0.0001). Median subjective image quality values for model-based iterative reconstruction were significantly higher ( P=0.003). Conclusion Model-based iterative reconstruction, offering a higher image quality at a thinner slice, allowed the identification of a higher number of acute traumatic lesions than hybrid iterative reconstruction, with a significant reduction of noise.


2021 ◽  
Vol 94 (1117) ◽  
pp. 20200677
Author(s):  
Andrea Steuwe ◽  
Marie Weber ◽  
Oliver Thomas Bethge ◽  
Christin Rademacher ◽  
Matthias Boschheidgen ◽  
...  

Objectives: Modern reconstruction and post-processing software aims at reducing image noise in CT images, potentially allowing for a reduction of the employed radiation exposure. This study aimed at assessing the influence of a novel deep-learning based software on the subjective and objective image quality compared to two traditional methods [filtered back-projection (FBP), iterative reconstruction (IR)]. Methods: In this institutional review board-approved retrospective study, abdominal low-dose CT images of 27 patients (mean age 38 ± 12 years, volumetric CT dose index 2.9 ± 1.8 mGy) were reconstructed with IR, FBP and, furthermore, post-processed using a novel software. For the three reconstructions, qualitative and quantitative image quality was evaluated by means of CT numbers, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in six different ROIs. Additionally, the reconstructions were compared using SNR, peak SNR, root mean square error and mean absolute error to assess structural differences. Results: On average, CT numbers varied within 1 Hounsfield unit (HU) for the three assessed methods in the assessed ROIs. In soft tissue, image noise was up to 42% lower compared to FBP and up to 27% lower to IR when applying the novel software. Consequently, SNR and CNR were highest with the novel software. For both IR and the novel software, subjective image quality was equal but higher than the image quality of FBP-images. Conclusion: The assessed software reduces image noise while maintaining image information, even in comparison to IR, allowing for a potential dose reduction of approximately 20% in abdominal CT imaging. Advances in knowledge: The assessed software reduces image noise by up to 27% compared to IR and 48% compared to FBP while maintaining the image information. The reduced image noise allows for a potential dose reduction of approximately 20% in abdominal imaging.


Author(s):  
Nikki van der Velde ◽  
H. Carlijne Hassing ◽  
Brendan J. Bakker ◽  
Piotr A. Wielopolski ◽  
R. Marc Lebel ◽  
...  

Abstract Objectives The aim of this study was to assess the effect of a deep learning (DL)–based reconstruction algorithm on late gadolinium enhancement (LGE) image quality and to evaluate its influence on scar quantification. Methods Sixty patients (46 ± 17 years, 50% male) with suspected or known cardiomyopathy underwent CMR. Short-axis LGE images were reconstructed using the conventional reconstruction and a DL network (DLRecon) with tunable noise reduction (NR) levels from 0 to 100%. Image quality of standard LGE images and DLRecon images with 75% NR was scored using a 5-point scale (poor to excellent). In 30 patients with LGE, scar size was quantified using thresholding techniques with different standard deviations (SD) above remote myocardium, and using full width at half maximum (FWHM) technique in images with varying NR levels. Results DLRecon images were of higher quality than standard LGE images (subjective quality score 3.3 ± 0.5 vs. 3.6 ± 0.7, p < 0.001). Scar size increased with increasing NR levels using the SD methods. With 100% NR level, scar size increased 36%, 87%, and 138% using 2SD, 4SD, and 6SD quantification method, respectively, compared to standard LGE images (all p values < 0.001). However, with the FWHM method, no differences in scar size were found (p = 0.06). Conclusions LGE image quality improved significantly using a DL-based reconstruction algorithm. However, this algorithm has an important impact on scar quantification depending on which quantification technique is used. The FWHM method is preferred because of its independency of NR. Clinicians should be aware of this impact on scar quantification, as DL-based reconstruction algorithms are being used. Key Points • The image quality based on (subjective) visual assessment and image sharpness of late gadolinium enhancement images improved significantly using a deep learning–based reconstruction algorithm that aims to reconstruct high signal-to-noise images using a denoising technique. • Special care should be taken when scar size is quantified using thresholding techniques with different standard deviations above remote myocardium because of the large impact of these advanced image enhancement algorithms. • The full width at half maximum method is recommended to quantify scar size when deep learning algorithms based on noise reduction are used, as this method is the least sensitive to the level of noise and showed the best agreement with visual late gadolinium enhancement assessment.


2021 ◽  
Author(s):  
Joshua Harper ◽  
Venkateswararao Cherukuri ◽  
Tom O'Riley ◽  
Mingzhao Yu ◽  
Edith Mbabazi-Kabachelor ◽  
...  

As low-field MRI technology is being disseminated into clinical settings, it is important to assess the image quality required to properly diagnose and treat a given disease. In this post-hoc analysis of an ongoing randomized clinical trial, we assessed the diagnostic utility of reduced-quality and deep learning enhanced images for hydrocephalus treatment planning. Images were degraded in terms of resolution, noise, and contrast between brain and CSF and enhanced using deep learning algorithms. Both degraded and enhanced images were presented to three experienced pediatric neurosurgeons accustomed to working in LMIC for assessment of clinical utility in treatment planning for hydrocephalus. Results indicate that image resolution and contrast-to-noise ratio between brain and CSF predict the likelihood of a useful image for hydrocephalus treatment planning. For images with 128x128 resolution, a contrast-to-noise ratio of 2.5 has a high probability of being useful (91%, 95% CI 73% to 96%; P=2e-16). Deep learning enhancement of a 128x128 image with very low contrast-to-noise (1.5) and low probability of being useful (23%, 95% CI 14% to 36%; P=2e-16) increases CNR improving the apparent likelihood of being useful, but carries substantial risk of structural errors leading to misleading clinical interpretation (CNR after enhancement = 5; risk of misleading results = 21%, 95% CI 3% to 32%; P=7e-11). Lower quality images not customarily considered acceptable by clinicians can be useful in planning hydrocephalus treatment. We find substantial risk of misleading structural errors when using deep learning enhancement of low quality images. These findings advocate for new standards in assessing acceptable image quality for clinical use.


2021 ◽  
Vol 10 (6) ◽  
pp. 205846012110239
Author(s):  
Nobuo Kashiwagi ◽  
Hisashi Tanaka ◽  
Yuichi Yamashita ◽  
Hiroto Takahashi ◽  
Yoshimori Kassai ◽  
...  

Background Several deep learning-based methods have been proposed for addressing the long scanning time of magnetic resonance imaging. Most are trained using brain 3T magnetic resonance images, but is unclear whether performance is affected when applying these methods to different anatomical sites and at different field strengths. Purpose To validate the denoising performance of deep learning-based reconstruction method trained by brain and knee 3T magnetic resonance images when applied to lumbar 1.5T magnetic resonance images. Material and Methods Using a 1.5T scanner, we obtained lumber T2-weighted sequences in 10 volunteers using three different scanning times: 228 s (standard), 119 s (double-fast), and 68 s (triple-fast). We compared the images obtained by the standard sequence with those obtained by the deep learning-based reconstruction-applied faster sequences. Results Signal-to-noise ratio values were significantly higher for deep learning-based reconstruction-double-fast than for standard and did not differ significantly between deep learning-based reconstruction-triple-fast and standard. Contrast-to-noise ratio values also did not differ significantly between deep learning-based reconstruction-triple-fast and standard. Qualitative scores for perceived signal-to-noise ratio and overall image quality were significantly higher for deep learning-based reconstruction-double fast and deep learning-based reconstruction-triple-fast than for standard. Average scores for sharpness, contrast, and structure visibility were equal to or higher for deep learning-based reconstruction-double-fast and deep learning-based reconstruction-triple-fast than for standard, but the differences were not statistically significant. The average scores for artifact were lower for deep learning-based reconstruction-double-fast and deep learning-based reconstruction-triple-fast than for standard, but the differences were not statistically significant. Conclusion The deep learning-based reconstruction method trained by 3T brain and knee images may reduce the scanning time of 1.5T lumbar magnetic resonance images by one-third without sacrificing image quality.


2021 ◽  
Vol 11 (2) ◽  
pp. 189
Author(s):  
Ni Larasati Kartika Sari ◽  
Deni Tiko Bahagia ◽  
Puji Hartoyo ◽  
Dewi Muliyati

<p class="AbstractHeading">ABSTRACT</p><p class="AbstractText">The aim of this research was to evaluate the effects of two different dose protocols’ usage on image quality. This research was performed on three different CT Scanners using high dose and low dose protocols of thorax scan. Different exposure parameters were used, depending on each scanner’s setting. GE QA CT Scan phantom was used for image quality assessment.  Image quality measured were CT number accuracy, uniformity and linearity, noise uniformity, spatial resolution and Contrast To Noise Ratio (CNR). CT Scan’s dose index, CTDIvol (Volumetric Computed Tomography Dose Index), was also measured to evaluate how these two protocols work in reducing radiation dose. The result showed that the usage of low dose protocols reduce the CTDIvol value at 85-91% compared to the high dose protocols, meanwhile most of the image quality parameters obtained from both protocols were still considered good. The CT number accuracy, uniformity, linearity and noise uniformity for all CT Scans were all still inside BAPETEN’s (Indonesia National Regulator Agency) threshold. There were 20-23% difference on the spatial resolution value measured from both protocols. The most significant difference came from CNR. The CNR obtained from high dose protocols were 65-93% higher than the one from low dose protocols.   </p><p class="AbstractText">Keywords: contrast to noise ratio, CTDIvol, CT number, spatial resolution</p><p class="AbstractHeading">ABSTRAK</p><p>Penelitian ini mengevaluasi pengaruh penggunanaan protokol dosis tinggi dan protokol dosis rendah terhadap kualitias citra dan dosis khususnya pada pemeriksaan CT Scan thorax. Penelitian ini dilakukan pada 3 sampel CT Scan yang berbeda. Faktor eksposi yang digunakan berbeda untuk tiap scanner, bergantung pada setting yang terdapat pada scanner. Fantom yagdigunakan untuk menilai kualitas citra adalah fantom GE QA CT Scan. Adapun kualitas citra yang diukur adalah keseragaman, akurasi, dan linearitas CT number, keseragaman noise, resolusi spasial, serta <em>Contrast to Noise Ratio</em> (CNR). Sementara dosis radiasi yang diamati adalah CTDIvol (Volumetrik <em>Computed Tomography Dose Index</em>) yang tampil pada konsol. Hasil penelitian ini menunjukkan bahwa penggunaan protokol dosis rendah mampu mengurangi nilai CTDIvol sebesar 85-91% dibanding dengan protokol dosis tinggi, sementara sebagian besar parameter kualitas citra yang diukur masih dinilai baik. Nilai akurasi, keseragaman, dan linearitas CT number  serta keseragaman noise pada protokol dosis tinggi dan dosis rendah, keseluruhannya masih dalam batas ambang BAPETEN. Terdapat perbedaan sebesar 20-23% pada nilai resolusi spasial yang terukur dari  kedua protokol. Nilai CNR pada protokol dosis tinggi lebih baik dari pada protokol dosis rendah, dengan perbedaan yang cukup signifikan, yaitu 65-93%.</p><p class="AbstractText">Kata kunci: <em>contrast to noise ratio</em>, CTDIvol, <em>CT number</em>, resolusi spasial</p>


Sign in / Sign up

Export Citation Format

Share Document