Metacomposite based on three-dimensional ferromagnetic microwire architecture for electromagnetic response

Author(s):  
Qian Jiang ◽  
Ye Qiao ◽  
Chunjie Xiang ◽  
Azim Uddin ◽  
Liwei Wu ◽  
...  
Geophysics ◽  
1993 ◽  
Vol 58 (2) ◽  
pp. 198-214 ◽  
Author(s):  
Martyn J. Unsworth ◽  
Bryan J. Travis ◽  
Alan D. Chave

A numerical solution for the frequency domain electromagnetic response of a two‐dimensional (2-D) conductivity structure to excitation by a three‐dimensional (3-D) current source has been developed. The fields are Fourier transformed in the invariant conductivity direction and then expressed in a variational form. At each of a set of discrete spatial wavenumbers a finite‐element method is used to obtain a solution for the secondary electromagnetic fields. The finite element uses exponential elements to efficiently model the fields in the far‐field. In combination with an iterative solution for the along‐strike electromagnetic fields, this produces a considerable reduction in computation costs. The numerical solutions for a horizontal electric dipole are computed and shown to agree with closed form expressions and to converge with respect to the parameterization. Finally some simple examples of the electromagnetic fields produced by horizontal electric dipole sources at both the seafloor and air‐earth interface are presented to illustrate the usefulness of the code.


Geophysics ◽  
1976 ◽  
Vol 41 (6) ◽  
pp. 1133-1156 ◽  
Author(s):  
J. J. Lajoie ◽  
G. F. West

A numerical model has been constructed to determine the three‐dimensional electromagnetic fields in the vicinity of a finite, thin, conductive plate buried in a horizontally stratified, conductive environment. The EM source is a rectangular loop. The problem is formulated as an integral equation for the electric field in the plate. However, to avoid certain numerical difficulties, the actual working variables are a pair of scalar potentials which represent divergence‐free and curl‐free current flows in the plate, and whose values are known at the nodes of a rectangular grid. The basic integral equation is then reduced to a set of linear equations which can be solved numerically. The cases modeled are a simulation of the Turam method. The models were a shallow plate and a deep plate in a conductive half‐space, a deep plate in an insulating host rock under a conductive layer, and a deep plate in a conductive host rock under a conductive layer. In all cases, the top of the plate was separated from the overburden, and the conductivities of the plate, layer, and host rock were varied widely. It was found that a conductive overburden layer alone causes a phase rotation and an attenuation of the local anomaly, while a conductive host medium causes, mainly, the addition of a “current gathering” component to the anomaly. The importance of the current gathering effect may vary from negligible to enormous as its amplitude and phase depend strongly on the conductivity of the host rock. When a conductive overburden and a moderately conducting host rock are present, both effects may arise. Anomaly enhancement by a conductive host rock is not likely to be advantageous in most prospecting situations, for while the detectability of a target bedrock conductor goes up, the ability to distinguish its anomaly from other weaker conductors is markedly decreased.


Geophysics ◽  
1985 ◽  
Vol 50 (7) ◽  
pp. 1144-1162 ◽  
Author(s):  
William A. SanFilipo ◽  
Perry A. Eaton ◽  
Gerald W. Hohmann

The transient electromagnetic (TEM) response of a three‐dimensional (3-D) prism in a conductive half‐space is not always approximated well by three‐dimensional free‐space or two‐dimensional (2-D) conductive host models. The 3-D conductive host model is characterized by a complex interaction between inductive and current channeling effects. We numerically computed 3-D TEM responses using a time‐domain integral‐equation solution. Models consist of a vertical or horizontal prismatic conductor in conductive half‐space, energized by a rapid linear turn‐off of current in a rectangular loop. Current channeling, characterized by currents that flow through the body, is produced by charges which accumulate on the surface of the 3-D body and results in response profiles that can be much different in amplitude and shape than the corresponding response for the same body in free space, even after subtracting the half‐space response. Responses characterized by inductive (vortex) currents circulating within the body are similar to the response of the body in free space after subtracting the half‐space contribution. The difference between responses dominated by either channeled or vortex currents is subtle for vertical bodies but dramatic for horizontal bodies. Changing the conductivity of the host effects the relative importance of current channeling, the velocity and rate of decay of the primary (half‐space) electric field, and the build‐up of eddy currents in the body. As host conductivity increases, current channeling enhances the amplitude of the response of a vertical body and broadens the anomaly along the profile. For a horizontal body the shape of the anomaly is distorted from the free‐space anomaly by current channeling and is highly sensitive to the resistivity of the host. In the latter case, a 2-D response is similar to the 3-D response only if current channeling effects dominate over inductive effects. For models that are not greatly elongated, TEM responses are more sensitive to the conductivity of the body than galvanic (dc) responses, which saturate at a moderate resistivity contrast. Multicomponent data are preferable to vertical component data because in some cases the presence and location of the target are more easily resolved in the horizontal response and because the horizontal half‐space response decays more quickly than does the corresponding vertical response.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Fang-Yu Li ◽  
Hao Wen ◽  
Zhen-Yun Fang ◽  
Di Li ◽  
Tong-Jie Zhang

AbstractGravitational waves (GWs) from extra dimensions, very early universe, and some high-energy astrophysical processes might have at most six polarization states: tensor- and nontensor-mode gravitons. The peak regions or partial peak regions (of the amplitudes or energy densities) of some of such GWs are just distributed in the GHz or higher frequency band, which would be an optimal frequency band for the electromagnetic (EM) response to such high-frequency GWs (HFGWs). In this paper we investigate the EM response to the HFGWs, and for the first time we obtain the concrete form of analytic solutions of the perturbative EM fields caused by all six possible polarizations of the HFGWs in the background stable EM fields and in the proposed three dimensional synchro-resonance system (3DSR system), respectively. It is found that all such six polarizations may in principle show separability and detectability. Moreover, the detection frequency band ($$\sim 10^{8}$$ ∼ 10 8 to $$10^{12}$$ 10 12 Hz or higher) of the signal photon fluxes by the 3DSR system and the observation frequency range ($$\sim 7\times 10^{7}$$ ∼ 7 × 10 7 to $$3\times 10^{9}$$ 3 × 10 9 Hz) of the signals by the FAST (Five-hundred-meter Aperture Spherical Telescope, China) have a certain overlapping property, and thus their coincidence experiments in the future for observations will have high complementarity.


Sign in / Sign up

Export Citation Format

Share Document