scholarly journals Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers

Author(s):  
Jiang Guo ◽  
Zhuoran Chen ◽  
Xiaojian Xu ◽  
Xu Li ◽  
Hu Liu ◽  
...  

AbstractIn this work, the engineered polyaniline (PANI)/epoxy composites reinforced with PANI-M (physical mixture of PANI spheres and fibers) exhibit significantly enhanced electromagnetic wave absorption performance and mechanical property. Due to the synergistic effect of PANI fillers with different geometries, the reflection loss of 10.0 wt% PANI-M/epoxy could reach − 36.8 dB at 17.7 GHz. Meanwhile, the mechanical properties (including tensile strength, toughness, and flexural strength) of PANI/epoxy were systematically studied. Compared with pure epoxy, the tensile strength of epoxy with 2.0 wt% PANI-M was improved to 86.2 MPa. Moreover, the PANI spheres (PANI-S) and PANI fibers (PANI-F) were prepared by the chemical oxidation polymerization method and interface polymerization method, respectively. The characterizations including scanning electron microscope, Fourier transform infrared spectra, and X-ray diffraction were applied to analyze the morphology and chemical and crystal structures of PANI filler. This work could provide the guideline for the preparation of advanced engineered epoxy nanocomposites for electromagnetic wave pollution treatment. Graphical abstract

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2145 ◽  
Author(s):  
Youwei Zhang ◽  
Hui-Ling Ma ◽  
Ke Cao ◽  
Liancai Wang ◽  
Xinmiao Zeng ◽  
...  

A facile and environmentally friendly method is proposed to prepare reduced graphene oxide–nickel (RGO–Ni) nanocomposites using γ-ray irradiation. Graphene oxide (GO) and Ni2+ are reduced by the electrons which originated from the gamma radiolysis of H2O. The structure and morphology of the obtained RGO–Ni nanocomposites were analyzed using X-ray diffraction (XRD) and Raman spectroscopy. The results show that Ni nanoparticles were dispersed uniformly on the surface of the RGO nanosheets. As expected, the combination of RGO nanosheets and Ni nanoparticles improved the electromagnetic wave absorption because of the better impedance matching. RGO–Ni nanocomposites exhibited efficient electromagnetic wave absorption performance. The minimum reflection loss (RL) of RGO–Ni reached −24.8 dB, and the highest effective absorption bandwidth was up to 6.9 GHz (RL < −10 dB) with a layer thickness of 9 mm.


2019 ◽  
Vol 248 ◽  
pp. 59-67 ◽  
Author(s):  
Xingliang Chen ◽  
Kailiang Zhong ◽  
Tao Shi ◽  
Xinlei Meng ◽  
Guanglei Wu ◽  
...  

2021 ◽  
Vol 31 (4) ◽  
pp. 249-255
Author(s):  
Zuoqun Zhang ◽  
Chaoshan Yang ◽  
Hua Cheng ◽  
Xiaohan Huang ◽  
Yuhao Zhu

Now there’re many researches on the electromagnetic radiation protection function of the cement-based electromagnetic wave absorbing materials, such materials have been widely used in various types of buildings. This paper proposed an idea for preparing a cement-based composite material by mixing functional aggregates with high content of Fe2O3 and SiC, that is, adding Fe3O4 powder and nano-SiC of different contents in the clay, and then sintering at 1190℃; the prepared aggregates showed obvious magnetic loss and dielectric loss to electromagnetic waves, and the numerical tube pressure could reach 16.83MPa. The double-layer reflectivity test board made of functional aggregates showed excellent electromagnetic wave absorption performance, its reflection loss was less than -10dB in the frequency range of 8~18GHz (corresponding to energy absorption greater than 90% EM), and its maximum RL reached -12.13dB. In addition, the compressive strength of the cement-based composite material at the age of 28 days reached 50.1 MPa, which can meet the strength requirements of building materials.


2020 ◽  
Vol 8 (1) ◽  
pp. 319-327 ◽  
Author(s):  
Yuan Fang ◽  
Weidong Xue ◽  
Rui Zhao ◽  
Shengxiang Bao ◽  
Wenjian Wang ◽  
...  

Small-angle neutron scattering was used to investigate the effect of nanoporosity on electromagnetic wave absorption in biomass-templated Fe3O4/C.


Sign in / Sign up

Export Citation Format

Share Document