Assessing the Potential Role of Compost, PGPR, and AMF in Improving Tomato Plant Growth, Yield, Fruit Quality, and Water Stress Tolerance

Author(s):  
Abdel-ilah Tahiri ◽  
Abdelilah Meddich ◽  
Anas Raklami ◽  
Abdelrahman Alahmad ◽  
Noura Bechtaoui ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan P. Nordstedt ◽  
Michelle L. Jones

Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.


Author(s):  
Tianqi Wang ◽  
Qingqing Liu ◽  
Nanqi Wang ◽  
Jing Dai ◽  
Qiaofang Lu ◽  
...  

2021 ◽  
Author(s):  
Liping Huang ◽  
Mohsin Tanveer ◽  
E Ji ◽  
Sergey Shabala ◽  
Mingyi Jiang

Abscisic acid (ABA) is a key component of many signaling networks mediating plant adaptation to various stresses. In this context, ABA-induced antioxidant defence is considered to be a main mechanism to that enhances water stress tolerance in plants. The specific details of this activation remain, however, elusive. In this work, we show that DIP1, a protein from novel R3H family, played a central role in modulating water stress tolerance in rice. OsDIP1 transcripts were induced by hydrogen peroxide (H2O2), ABA, drought (polyethylene glycol treatment), and salt stress. Overexpression of OsDIP1 in rice enhanced drought and salinity tolerance while knocking out OsDIP1 by CRISPR-Cas9 editing resulted in drought and salt sensitive phenotype. The activity and gene expression of antioxidant defence enzymes, superoxide dismutase (SOD), catalase (CAT), increased in OsDIP1-overexpressed transgenic rice plants, while the content of malondialdehyde (MDA) decreased. In contrast, the content and gene expression of SOD and CAT, decreased, and the content of MDA increased in knockout of OsDIP1 rice plants, suggesting that overexpression of OsDIP1 enhances the antioxidant capacity of rice plants. The yeast two hybrid screening test revealed that OsDIP1 interacted with ZFP36, a key zinc finger transcription factor involved in ABA-induced antioxidant defence. Moreover, OsDIP1 could modulate some key ABA-responsive genes via interacting with ZFP36. Overall, our findings indicate an important role of OsDIP1 in ABA-induced antioxidant defence signaling and adaptation to salinity and drought in rice.


2022 ◽  
Vol 82 ◽  
Author(s):  
N. Hussain ◽  
A. Yasmeen ◽  
M. M. Yousaf

Abstract Water stress executes severe influences on the plant growth and development through modifying physio-chemical properties. Therefore, a field experiment was designed to evaluate the antioxidant status and their enhancements strategies for water stress tolerance in chickpea on loam and clay loam soils under agro-ecological conditions of Arid Zone Research Institute, Bahawalpur (29.3871 °N, 71.653 °E) and Cholistan farm near Derawer (28.19°N, 71.80°E) of Southern Punjab, Pakistan during winter 2014-15. Experimental treatments comprised of two chickpea cultivars i.e. Bhakhar 2011 (drought tolerant) and DUSHT (drought sensitive), two water stress levels i.e. water stress at flowering stage and water stress at flowering + pod formation + grain filling stage including well watered (control) and two exogenous application of osmoprotectants i.e. glycine betaine (GB) 20 ppm and proline 10 uM including distilled water (control). Results indicated that water stress at various growth stages adversely affects the growth, yield and quality attributes of both chickpea cultivars. Exogenous application of GB and proline improved the growth, yield and quality parameters of both chickpea cultivars even under water stress conditions. However, superior results were obtained with exogenously applied GB on Bhakhar 2011 under well-watered conditions. Similarly, foliar spray of GB on chickpea cultivar Bhakhar 2011 under stress at flowering + pod formation + grain filling stage produced maximum superoxide dismutase, peroxidase and catalase contents. These results suggested that application of GB mitigates the adverse effects of water stress and enhanced tolerance in chickpea mainly due to higher antioxidant enzymes activity, demonstrating the protective measures of plant cells in stress condition. Hence, antioxidants status might be a suitable method for illustrating water stress tolerance in chickpea.


Rhizosphere ◽  
2021 ◽  
pp. 100367
Author(s):  
Zohreh Ghanbarzadeh ◽  
Hajar Zamani ◽  
Sasan Mohsenzadeh ◽  
Łukasz Marczak ◽  
Maciej Stobiecki ◽  
...  

2021 ◽  
Vol 281 ◽  
pp. 109992
Author(s):  
Anas Hamdani ◽  
Jamal Charafi ◽  
Said Bouda ◽  
Lahcen Hssaini ◽  
Atman Adiba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document