scholarly journals High Carbon Amendments Increase Nitrogen Retention in Soil After Slurry Application—an Incubation Study with Silty Loam Soil

Author(s):  
Xinyue Cao ◽  
Rüdiger Reichel ◽  
Holger Wissel ◽  
Sirgit Kummer ◽  
Nicolas Brüggemann

AbstractExcess nitrogen (N) after animal slurry application is a persistent problem of intensive agriculture, with consequences such as environmental pollution by ammonia (NH3) and nitrous oxide (N2O) emissions and nitrate (NO3−) leaching. High-carbon organic soil amendments (HCAs) with a large C:N ratio have shown the potential of mitigating unintended N losses from soil. To reduce gaseous and leaching N losses after the application of slurry, a laboratory incubation study was conducted with silt loam soil. We tested the potential of three different types of HCA—wheat straw, sawdust, and leonardite (application rate 50 g C L−1 slurry for each of the three HCAs)—to mitigate N loss after amendment of soil with pig and cattle slurry using two common application modes (slurry and HCA mixed overnight with subsequent addition to soil vs. sequential addition) at an application rate equivalent to 80 kg N ha−1. Compared to the control with only soil and slurry, the addition of leonardite reduced the NH3 emissions of both slurries by 32–64%. Leonardite also reduced the total N2O emissions by 33–58%. Wheat straw reduced N2O emissions by 40–46%, but had no effect on NH3 emission. 15 N labeling showed that the application of leonardite was associated with the highest N retention in soil (24% average slurry N recovery), followed by wheat straw (20% average slurry N recovery). The mitigation of N loss was also observed for sawdust, although the effect was less consistent compared with leonardite and wheat straw. Mixing the slurry and HCA overnight tended to reduce N losses, although the effect was not consistent across all treatments. In conclusion, leonardite improved soil N retention more effectively than wheat straw and sawdust.

2020 ◽  
Vol 15 (3) ◽  
Author(s):  
Carmelo Maucieri ◽  
Carlo Nicoletto ◽  
Giampaolo Zanin ◽  
Marco Birolo ◽  
Gerolamo Xiccato ◽  
...  

As in any agroecosystem, also in aquaponics the nitrogen (N) balance represents an important tool to evaluate sustainability, and to identify factors that can improve N use efficiency (NUE) and reduce N losses. In this respect, fish stocking density has been little investigated, hence this research aimed to evaluate the N balance of a low technology aquaponic (AP) system managed at two fish densities in comparison with a hydroponic system (HP). In the fish tanks common carp at two initial stocking densities were reared (2.5 and 4.6 kg m–3 in low and high AP, hereafter named APL and APH, respectively) and the vegetated sector was cultivated with a leafy vegetable crop succession (Catalogna chicory, lettuce, Swiss chard). The N balance considered N input as fish feed or fertiliser, and N content in the initial water and the N output as N in the incremented fish biomass, in the harvested vegetables, in the sediments, and in the remaining water. Total N loss was estimated by difference. The total N input and the N loss through gas emission in the atmosphere were much higher in AP than in HP, particularly at high stocking density. The opposite trend was observed for the N input recovered in vegetable aboveground biomass. The N input recovered as fish biomass was slightly higher in APL compared to APH. The better results of APL than APH suggest that in low-tech AP system lower initial fish density should be adopted at the system start up to maximise both production and N recovery.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 604 ◽  
Author(s):  
G. D. Schwenke ◽  
B. M. Haigh

Summer crop production on slow-draining Vertosols in a sub-tropical climate has the potential for large emissions of soil nitrous oxide (N2O) from denitrification of applied nitrogen (N) fertiliser. While it is well established that applying N fertiliser will increase N2O emissions above background levels, previous research in temperate climates has shown that increasing N fertiliser rates can increase N2O emissions linearly, exponentially or not at all. Little such data exists for summer cropping in sub-tropical regions. In four field experiments at two locations across two summers, we assessed the impact of increasing N fertiliser rate on both soil N2O emissions and crop yield of grain sorghum (Sorghum bicolor L.) or sunflower (Helianthus annuus L.) in Vertosols of sub-tropical Australia. Rates of N fertiliser, applied as urea at sowing, included a nil application, an optimum N rate and a double-optimum rate. Daily N2O fluxes ranged from –3.8 to 2734g N2O-Nha–1day–1 and cumulative N2O emissions ranged from 96 to 6659g N2O-Nha–1 during crop growth. Emissions of N2O increased with increased N fertiliser rates at all experimental sites, but the rate of N loss was five times greater in wetter-than-average seasons than in drier conditions. For two of the four experiments, periods of intense rainfall resulted in N2O emission factors (EF, percent of applied N emitted) in the range of 1.2–3.2%. In contrast, the EFs for the two drier experiments were 0.41–0.56% with no effect of N fertiliser rate. Additional 15N mini-plots aimed to determine whether N fertiliser rate affected total N lost from the soil–plant system between sowing and harvest. Total 15N unaccounted was in the range of 28–45% of applied N and was presumed to be emitted as N2O+N2. At the drier site, the ratio of N2 (estimated by difference)to N2O (measured) lost was a constant 43%, whereas the ratio declined from 29% to 12% with increased N fertiliser rate for the wetter experiment. Choosing an N fertiliser rate aimed at optimum crop production mitigates potentially high environmental (N2O) and agronomic (N2+N2O) gaseous N losses from over-application, particularly in seasons with high intensity rainfall occurring soon after fertiliser application.


Nitrogen ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 34-51
Author(s):  
Amitava Chatterjee

Nitrogen (N) losses from field crops have raised environmental concerns. This manuscript accompanies a database of N loss studies from non-legume field crops conducted across the conterminous United States. Cumulative N losses through nitrous oxide-denitrification (CN2O), ammonia volatilization (CNH3), and nitrate leaching (CNO3−) during the growing season and associated crop, soil, and water management information were gathered to determine the extent and controls of these losses. This database consisted of 404, 26, and 358 observations of CN2O, CNH3, and CNO3− losses, respectively, from sixty-two peer-reviewed manuscripts. Corn (Zea mays) dominated the N loss studies. Losses ranged between −0.04 to 16.9, 2.50 to 50.9, and 0 to 257 kg N ha−1 for CN2O, CNH3 and CNO3−, respectively. Most CN2O and CNO3− observations were reported from Colorado (n = 100) and Iowa (n = 176), respectively. The highest values of CN2O, and CNO3− were reported from Illinois and Minnesota states, and corn and potato (Solanum tuberosum), respectively. The application of anhydrous NH3 had the highest value of CN2O loss, and ammonium nitrate had the highest CNO3− loss. Among the different placement methods, the injection of fertilizer-N had the highest CN2O loss, whereas the banding of fertilizer-N had the highest CNO3− loss. The maximum CNO3− loss was higher for chisel than no-tillage practice. Both CN2O and CNO3− were positively correlated with fertilizer N application rate and the amount of water input (irrigation and rainfall). Fertilizer-N management strategies to control N loss should consider the spatio-temporal variability of interactions among climate, crop-and soil types.


1987 ◽  
Vol 67 (3) ◽  
pp. 687-692 ◽  
Author(s):  
A. F. MACKENZIE ◽  
J. S. TOMAR

Retention of nitrogen in manure to be used for crop production and to reduce environmental pollution is an essential management component. The effects of monocalcium phosphate monohydrate (MCPM) and aeration on N retention in liquid hog (Sus scrofa domesticus) manure (LHM) were investigated under laboratory conditions. The manure received 0, 20 or 40 g of MCPM kg−1 of LHM (0, 250 or 500 g MCPM kg−1 manure solids) and was incubated over a 15-d period with and without aeration. Manure pH decreased with added MCPM and then remained constant, but pH increased with time when MCPM was not added. Losses of NH3 from hog manure were significantly reduced by added MCPM, but increased significantly with aeration where MCPM was not added to the manure. The NH4-N content of LHM was higher where MCPM was added to the manure. Conversely, the NH4-N content tended to decrease with aeration in the absence of MCPM. Total N content of LHM was significantly decreased where MCPM was not added to the manure. Aeration had no significant effect on total N. It was concluded that addition of MCPM can increase the NH4-N content of LHM by decreasing NH3-N losses through acidification of the manure. Key words: Aeration, Ca(H2PO4)2∙H2O, hog manure, pH reduction, NH3 loss


1972 ◽  
Vol 27 (3) ◽  
pp. 543-552 ◽  
Author(s):  
J. S. Weiner ◽  
J. O. C. Willson ◽  
Hamad El-Neil ◽  
Erica F. Wheeler

1. Nitrogen intakes, and N output in urine, faeces and sweat have been measured in six young Tanzanian men who were accustomed to a hot climate. The measurements were done while the subjects were receiving first a normal and then a low-N diet; and when they were performing moderate physical work, and had undergone a period of acclimatization.2. When the subject were acclimatized and working on a normal diet, their sweat output increased, with a fall in its N concentration. Total sweat N loss increased from an average of 0.10 to 0.71 g/d.3. The effect of the low-N diet was to decrease both the sweat N concentration, and the rate of increase of total N loss in sweat, as sweat volume increased.4. It is estimated that maximum sweat N losses would not exceed 1 g/d on an adequate diet, or 0.5 g/d on a low-protein diet. Our results provide no basis for recommending extra protein allowances to cover sweat N losses for workers in tropical climates.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2136
Author(s):  
Esperanza Fuertes ◽  
Ahmad Reza Seradj ◽  
Jordi Maynegre Santaularia ◽  
Daniel Villalba Mata ◽  
Gabriel de la Fuente Oliver ◽  
...  

The aim of this study was to determine N recovery and irreversible losses (i.e., through NH3-N volatilization) from manure in two different housing systems throughout a year using an N mass balance approach. Dietary, milk, and manure N were monitored together with outside temperatures in six dairy barns during six months, comprising two different seasons. Three barns were designed as conventional free stalls (cubicle, CUB) and the other three barns as compost-bedded packs (CB). All the barns were located in the Ebro’s valley, in the northeast of Spain. Mass N balance was performed simultaneously in the six barns, during two three-month periods (Season I and II) and sampling at a 15-day interval. Results of ANOVA analysis showed that annual N retained in manure (kg/head per year) from cows housed in CUB barns was significantly higher than in manure from cows housed in CB (133.5 vs. 70.9, p < 0.001), while the opposite was observed for N losses (26.9 vs. 84.8, for CUB and CB barn, respectively; p < 0.005). The annual mean proportion of irreversible N loss from manure in relation to N intake was much lower in barns using conventional free-stall cubicles than the mean ratio registered in bedded pack systems barns.


1994 ◽  
Vol 122 (3) ◽  
pp. 385-391 ◽  
Author(s):  
K. F. Ng Kee Kwong ◽  
J. Deville

SUMMARYThe patterns of N uptake and dry matter synthesis by sugarcane (Saccharum hybrid spp.) were studied at four locations in Mauritius with 15N–labelled ammonium sulphate (100 kg N/ha) applied either in a single dressing in September or in two split applications in September and the following February. More than 80% of the total N recovered at harvest (100–120 kgN/ha) was absorbed by the sugarcane during an active uptake period from October to January. Split application prolonged this active N uptake until April only and had no effect on dry matter accumulation. While total Nabsorbed by above-ground sugarcane showed no decline over time, 10–20 kg N/ha of the 15N–labelled N was lost from the green tops even when the N was applied on two occasions. The fertilizer N losses from above-ground sugarcane were, however, not evident when fertilizer N recovery with time was studied by the difference method. In view of the observed losses of fertilizer N from the aerial parts of sugarcane, measurement of fertilizer N recovery at harvest by the N isotope dilution technique underestimates fertilizer N uptake by sugarcane and attributes too large a fraction of N loss to denitrification/volatilization of NH3.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 546
Author(s):  
Ahmmed Md Motasim ◽  
Abd Wahid Samsuri ◽  
Arina Shairah Abdul Sukor ◽  
Amin Mohd Adibah

The mineralization of urea fertilizer mostly regulates the nitrogen dynamics in the soil. A laboratory-scale study was conducted to compare the nitrogen dynamics in two tropical soil series incubated with either liquid urea (LU) or granular urea (GU) at 0, 300, 400 or 500 mg/kg of soil. The soils samples used in the experiment were the Bungor and Selangor soil series which have a sandy clay loam and clay texture, respectively. The NH4+-N, NO3−-N concentration in the soils were measured for four weeks to determine the urea-N mineralization while ten pore volumes of water were used for the NH4+-N and NO3−-N leaching loss. At the same application rate, higher NH4+-N and NO3−-N concentrations were recorded in the LU applied soils throughout the incubation period in case of N mineralization. Urea-N recovery was higher in GU than LU treated soils in the first two weeks while no urea-N was present in both GU and LU treated soils after the third week of incubation. The leaching of N (NH4+-N and NO3−-N) was higher in GU treated soils than that of LU and leaching was increased with increased application rate in both LU and GU in both soils. The NH4+-N and NO3−-N concentrations were higher in the Selangor soil whereas the total N leaching loss was higher in Bungor soil. The results suggest that the LU was a better N fertilizer source than GU for rapid mineralization, quicker N availability and lower N leaching loss.


2015 ◽  
Vol 16 (1) ◽  
pp. 253-264 ◽  
Author(s):  
Cecílio Viega SOARES FILHO ◽  
Ulysses CECATO ◽  
Ossival Lolato RIBEIRO ◽  
Cláudio Fabrício da Cruz ROMA ◽  
Tatiane BELONI

<p>Gaseous losses are the main factors affecting the efficiency of nitrogenous fertilizers in pastures. To evaluate NH<sub>3</sub>-N volatilization losses in Tanzania grass fertilized with urea in autumn, spring and summer, a completely randomized design with repeated measurements over time and fifteen replicates was used. Plots were represented by urea levels (50; 100 and 150 kg ha<sup>-1</sup> N) and subplots by time after fertilization (1; 2; 3; 6; 9; 12 and 15 days). The interaction between fertilization leveland time after urea application was significant for the accumulated NH<sub>3</sub>-N volatilization. Urea application leads to higher percentage N losses in the first three days after application. The average cumulative NH<sub>3</sub>-N loss for the three occasions (different seasons of the year) was 28%, 20% and 16% of N applied for fertilizer doses of 50; 100 and 150 kg ha<sup>-1</sup>of N, respectively. The season of the year influenced NH<sub>3</sub>-N loss pattern and volume, with the lowest values recorded in spring, followed by summer and autumn. The cumulative NH<sub>3</sub>-N volatilization loss varies from 78 to 90% up to the third day after application of the total N-NH3 loss.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254227
Author(s):  
Limin Wang ◽  
Dongfeng Huang

Rice cultivation usually involves high water and fertilizer application rates leading to the nonpoint pollution of surface waters with phosphorus (P) and nitrogen (N). Here, a 10-year field experiment was conducted to investigate N and P losses and their impact factors under different irrigation and fertilization regimes. Results indicated that T2 (Chemical fertilizer of 240 kg N ha−1, 52 kg P ha−1, and 198 kg K ha−1 combined with shallow intermittent irrigation) decreased N loss by 48.9% compared with T1 (Chemical fertilizer of 273 kg N ha−1, 59 kg P ha−1, and 112 kg K ha−1 combined with traditional flooding irrigation). The loss ratio (total N loss loading/amount of applied N) of N was 9.24–15.90%, whereas that of P was 1.13–1.31% in all treatments. Nitrate N (NO3-−N) loss was the major proportion accounting for 88.30–90.65% of dissolved inorganic N loss through surface runoff. Moreover, the N runoff loss was mainly due to high fertilizer input, soil NO3-−N, and ammonium N (NH4+−N) contents. In addition, the N loss was accelerated by Bacteroidetes, Proteobacteria, Planotomycetes, Nitrospirae, Firmicutes bacteria and Ascomycota fungi, but decreased by Chytridiomycota fungi whose contribution to the N transformation process. Furthermore, T2 increased agronomic N use efficiency (AEN) and rice yield by 32.81% and 7.36%, respectively, in comparison with T1. These findings demonstrated that T2 might be an effective approach to ameliorate soil chemical properties, regulate microbial community structure, increase AEN and consequently reduce N losses as well as maintaining rice yields in the present study.


Sign in / Sign up

Export Citation Format

Share Document