Soil Nutritional Status Drives the Co-occurrence of Nodular Bacterial Species and Arbuscular Mycorrhizal Fungi Modulating Plant Nutrition and Growth of Vigna unguiculata L. (Walp) in Grassland and Savanna Ecosystems in KwaZulu-Natal, South Africa

Author(s):  
Brenda T. Makaure ◽  
Adeyemi O. Aremu ◽  
Anathi Magadlela
Author(s):  
Hashem Abeer ◽  
E. F. Abd_Allah ◽  
A. A. Alqarawi ◽  
Dilfuza Egamberdieva

The aim of present study was to examine the effect of arbuscular mycorrhizal fungi (AMF) on the growth, lipid peroxidation, antioxidant enzyme activity and some key physio-biochemical attributes in cowpea (<italic>Vigna unguiculata</italic> [L.] Walp.) subjected to salt stress. Salt stress (200 mM NaCl) reduced growth, biomass, relative water content and chlorophyll pigment content in cowpea leaves. AMF ameliorated the negative impact of salinity on the growth parameters studied. The activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and glutathione reductase (GR) enhanced under salt stress and AMF inoculation further enhanced their activity, thus strengthening the plant’s defense system. Proline content increased in salt stressed plants as well as AMF-inoculated plants providing efficient protection against salt stress. Besides this AMF also increased uptake of mineral elements which have direct impact on the osmoregulation of the plants. The present study shows that AMF possesses the potential to enhance salt tolerance of cowpea.


Science ◽  
2021 ◽  
Vol 372 (6544) ◽  
pp. 864-868
Author(s):  
Mélanie K. Rich ◽  
Nicolas Vigneron ◽  
Cyril Libourel ◽  
Jean Keller ◽  
Li Xue ◽  
...  

Symbiosis with arbuscular mycorrhizal fungi (AMF) improves plant nutrition in most land plants, and its contribution to the colonization of land by plants has been hypothesized. Here, we identify a conserved transcriptomic response to AMF among land plants, including the activation of lipid metabolism. Using gain of function, we show the transfer of lipids from the liverwort Marchantia paleacea to AMF and its direct regulation by the transcription factor WRINKLED (WRI). Arbuscules, the nutrient-exchange structures, were not formed in loss-of-function wri mutants in M. paleacea, leading to aborted mutualism. Our results show the orthology of the symbiotic transfer of lipids across land plants and demonstrate that mutualism with arbuscular mycorrhizal fungi was present in the most recent ancestor of land plants 450 million years ago.


2006 ◽  
Vol 41 (9) ◽  
pp. 1405-1411 ◽  
Author(s):  
Edson Luiz Souchie ◽  
Rosario Azcón ◽  
Jose Miguel Barea ◽  
Orivaldo José Saggin-Júnior ◽  
Eliane Maria Ribeiro da Silva

The objective of this work was to evaluate the ability of several P-solubilizing fungi to solubilize aluminum phosphate and Araxá apatite as well as the synergism between the P-solubilizing fungus, PSF 7, and arbuscular mycorrhizal fungi to promote clover growth amended with aluminum phosphate. Two experiments were carried out, the first under laboratory conditions and the second in a controlled environmental chamber. In the first experiment, PSF 7, PSF 9, PSF 21 and PSF 22 isolates plus control were incubated in liquid medium at 28ºC for eight days. On the 2nd, 4th and 8th day of incubation, pH and soluble P were determined. In the second experiment, clover was sowed in plastic pots containing 300 g of sterilized substrate amended with aluminum phosphate, 3 g L-1, in presence and absence of PSF 7 isolate and arbuscular mycorrhizal fungi. A completely randomized design, in factorial outline 2x2 (presence and absence of PSF 7 and arbuscular mycorrhizal fungi) and five replicates were used. In the first experiment, higher P content was detected in the medium containing aluminum phosphate. PSF 7 is the best fungi isolate which increases aluminum solubilization with major tolerance to Al3+. Clover growth was stimulated by presence of PSF 7 and arbuscular mycorrhizal fungi. There is synergism between microorganisms utilized to improve plant nutrition.


Author(s):  
Mehraj ud din Khanday ◽  
Rouf Ahmad Bhat ◽  
Shamsul Haq ◽  
Moonisa Aslam Dervash ◽  
Asma Absar Bhatti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document