scholarly journals The projected impacts of smart decline on urban runoff contamination levels

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Rui Zhu ◽  
Galen Newman

AbstractThere has been mounting interest about how the repurposing of vacant land (VL) through green infrastructure (the most common smart decline strategy) can reduce stormwater runoff and improve runoff quality, especially in legacy cities characterized by excessive industrial land uses and VL amounts. This research examines the long-term impacts of smart decline on both stormwater amounts and pollutants loads through integrating land use prediction models with green infrastructure performance models. Using the City of St. Louis, Missouri, USA as the study area, we simulate 2025 land use change using the Conversion of Land Use and its Effects (CLUE-S) and Markov Chain urban land use prediction models and assess these change’s probable impacts on urban contamination levels under different smart decline scenarios using the Long-Term Hydrologic Impact Assessment (L-THIA) performance model. The four different scenarios are: (1) a baseline scenario, (2) a 10% vacant land re-greening (VLRG) scenario, (3) a 20% VLRG scenario, and (4) a 30% VLRG scenario. The results of this study illustrate that smart decline VLRG strategies can have both direct and indirect impacts on urban stormwater runoff and their inherent contamination levels. Direct impacts on urban contamination include the reduction of stormwater runoff and non-point source (NPS) pollutants. In the 30% VLRG scenario, the annual runoff volume decreases by 11%, both physical, chemical, and bacterial pollutants are reduced by an average of 19%, compared to the baseline scenario. Indirect impacts include reduction of the possibility of illegal dumping on VL through mitigation and prevention of future vacancies.

2012 ◽  
Vol 9 (11) ◽  
pp. 4323-4335 ◽  
Author(s):  
B. J. Huser ◽  
J. Fölster ◽  
S. J. Köhler

Abstract. Long-term data series (1996–2009) for eleven acidic headwater streams (< 10 km2) in Sweden were analyzed to determine factors controlling concentrations of trace metals. In-stream chemical data as well climatic, flow, and deposition chemistry data were used to develop models predicting concentrations of chromium (Cr), lead (Pb), and zinc (Zn). Data were initially analyzed using partial least squares to determine a set of variables that could predict metal concentrations across all sites. Organic matter (as absorbance) and iron related positively to Pb and Cr, while pH related negatively to Pb and Zn. Other variables such as conductivity, manganese, and temperature were important as well. Multiple linear regression was then used to determine minimally adequate prediction models which explained an average of 35% (Cr), 52% (Zn), and 72% (Pb) of metal variation across all sites. While models explained at least 50% of variation in the majority of sites for Pb (10) and Zn (8), only three sites met this criterion for Cr. Investigation of variation between site models for each metal revealed geographical (altitude), chemical (sulfate), and land-use (silvaculture) influences on predictive power of the models. Residual analysis revealed seasonal differences in the ability of the models to predict metal concentrations as well. Expected future changes in model variables were applied and results showed the potential for long-term increases (Pb) or decreases (Zn) for trace metal concentrations at these sites.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1765 ◽  
Author(s):  
Conor Lewellyn ◽  
Bridget Wadzuk

Many communities throughout the world are utilizing green infrastructure practices to mitigate the projected impacts of climate change. While some areas of the world are anticipating droughts, other areas are preparing for an increased flood risk, due to changes in precipitation volume and intensity. Cities rely on practices such as bioinfiltration to sustainably capture stormwater runoff and provide resilience against climate change. As cities aim to increase resilience and decrease climate-change-associated risks, a greater understanding of these risks is needed. A risk-based approach was used to evaluate bioinfiltration design and performance. Climate projections from the Couple Model Intercomparison Project Phase 5 were used to create near-term (2020–2049) and long-term (2050–2079) climate datasets for Philadelphia, Pennsylvania, using two representative concentration pathways (RCPs 2.6 and 8.5). Both near-term and long-term climate models demonstrated increased precipitation and daily temperatures, similar to other areas in the U.S. Northeast, Midwest, Great Plains, and Alaska. Climate data were used to model bioinfiltration practices using continuous simulation hydrologic models. Overflow events and cumulative risk increased from bioinfiltration sites when compared to the baseline scenario (1970–1999). This study demonstrates how to apply a risk-based approach to bioinfiltration design using climate projections and provides recommendations to increase resilience in bioinfiltration design.


2008 ◽  
Vol 2008 (6) ◽  
pp. 916-934
Author(s):  
James C. Schlaman ◽  
Bryce Lawrence ◽  
Scott Schulte

2012 ◽  
Vol 9 (2) ◽  
pp. 1793-1828 ◽  
Author(s):  
B. J. Huser ◽  
J. Fölster ◽  
S. Köhler

Abstract. Long term data series (1996–2009) for eleven acidic, headwater streams (<10 km2) in Sweden were analyzed to determine factors controlling concentrations of trace metals. In-stream chemical data as well climatic, flow, and deposition chemistry data were used to develop models predicting concentrations of chromium (Cr), lead (Pb), and zinc (Zn). Data were initially analyzed using partial least squares to determine a set of variables that could predict metal concentrations across all sites. Organic matter (as absorbance) and iron related positively to Pb and Cr while pH related negatively to Pb and Zn. Other variables such as conductivity, manganese, and temperature were important as well. Multiple linear regression was then used to determine minimally adequate prediction models which explained an average of 35% (Cr), 52% (Zn), and 72% (Pb) of metal variation across all sites. While models explained at least 50% of variation in the majority of sites for Pb (10) and Zn (8), only three sites met this criterion for Cr. Investigation of variation between site models for each metal revealed geographical (altitude), chemical (sulfate), and land use (silvaculture) influences on predictive power of the models. Residual analysis revealed seasonal differences in the ability of the models to predict metal concentrations as well. Expected future changes in model variables were applied and results showed the potential for long term increases (Pb) or decreases (Zn) for trace metal concentrations at these sites.


Author(s):  
Jessica Penny ◽  
Slobodan Djordjević ◽  
Albert S Chen

Abstract This paper aims to improve the understanding of environmental and socioeconomic drivers on land use change (LUC) through public participation (PP), and provide recommendations for long-term policy making to support sustainable land use management. Public participation (PP) was necessary to help understand and address the problem and concerns of stakeholders within the study area. Through two collaboration workshops seven individual future land use scenarios were created. Using the FLUS (Future land use simulation) model, land use was projected up till 2060, after which logistic regression analysis took place to find the most significant driver. Results found that LUC within the baseline scenario and the ones chosen by stakeholders were very different, however concluded that Paddy field extent would decrease in the future to be replaced by more drought resilient agriculture; Perennials & Orchards and Field Crops. Outcomes from future scenarios propose that future LUC was driven by environment spatial factors such as elevation and climate, not soil suitability. With, first hand interviews suggesting it is indirect external factors such as, crop price that drive LUC. Overall the study provides steps towards dynamic LUC modelling where future scenarios have been tailored to details specified by the public through their participation.


2014 ◽  
Vol 76 ◽  
pp. 15-23
Author(s):  
Barrie J. Wills

A warm welcome to our "World of Difference" to all delegates attending this conference - we hope your stay is enjoyable and that you will leave Central Otago with an enhanced appreciation of the diversity of land use and the resilient and growing economic potential that this region has to offer. Without regional wellbeing the national economy will struggle to grow, something Central Government finally seems to be realising, and the Central Otago District Council Long Term Plan 2012-2022 (LTP) signals the importance of establishing a productive economy for the local community which will aid in the economic growth of the district and seeks to create a thriving economy that will be attractive to business and residents alike. Two key principles that underpin the LTP are sustainability and affordability, with the definition of sustainability being "… development that meets the needs of the present without compromising the ability of future generations to meet their own needs."


2018 ◽  
Vol 59 (1) ◽  
pp. 65-79
Author(s):  
Katarzyna Nikorowicz-Zatorska

Abstract The present paper focuses on spatial management regulations in order to carry out investment in the field of airport facilities. The construction, upgrades, and maintenance of airports falls within the area of responsibility of local authorities. This task poses a great challenge in terms of organisation and finances. On the one hand, an active airport is a municipal landmark and drives local economic, social and cultural development, and on the other, the scale of investment often exceeds the capabilities of local authorities. The immediate environment of the airport determines its final use and prosperity. The objective of the paper is to review legislation that affects airports and the surrounding communities. The process of urban planning in Lodz and surrounding areas will be presented as a background to the problem of land use management in the vicinity of the airport. This paper seeks to address the following questions: if and how airports have affected urban planning in Lodz, does the land use around the airport prevent the development of Lodz Airport, and how has the situation changed over the time? It can be assumed that as a result of lack of experience, land resources and size of investments on one hand and legislative dissonance and peculiar practices on the other, aviation infrastructure in Lodz is designed to meet temporary needs and is characterised by achieving short-term goals. Cyclical problems are solved in an intermittent manner and involve all the municipal resources, so there’s little left to secure long-term investments.


2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document