Expression of amino acid transport systems in Xenopus oocytes injected with mRNA of rat small intestine and kidney

1988 ◽  
Vol 265 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Hitoshi Aoshima ◽  
Kazuo Tomita ◽  
Shigenobu Sugio
1993 ◽  
Vol 64 (7) ◽  
pp. 700-708
Author(s):  
Kiyoshi TAJIMA ◽  
Ryozo TAKADA ◽  
Toru MORI ◽  
Hisao ITABASHI ◽  
Kei-ichiro SUGIMURA

1998 ◽  
Vol 76 (5) ◽  
pp. 859-865 ◽  
Author(s):  
Sylvia YM Yao ◽  
William R Muzyka ◽  
Carol E Cass ◽  
Christopher I Cheeseman ◽  
James D Young

Members of the BAT and 4F2hc gene family have one or, in the case of BAT, up to four transmembane domains and induce amino acid transport systems bo,+ (BAT) and y+L (4F2hc) when expressed in Xenopus oocytes. System bo,+ is a Na+-independent process with a broad tolerance for cationic and zwitterionic amino acids, whereas y+L exhibits Na+-independent transport of cationic amino acids (e.g., lysine) and Na+-dependent transport of zwitterionic amino acids (e.g., leucine). Mutations in the human BAT gene are associated with type I cystinuria, a genetic disease affecting the ability of intestinal and renal brush border membranes to transport cationic amino acids and cystine. An unresolved question is whether BAT and 4F2hc themselves have catalytic (i.e., transporting) activity or whether they operate as activators of other, as yet unidentified, transporter proteins. In this report, we have investigated the transport of representatives of four different classes of organic substrates in Xenopus oocytes following injection with rat BAT or 4F2hc RNA transcripts: leucine (a control amino acid substrate), uridine (a nucleoside), pyruvate (a monocarboxylate), and choline (an amine). Both recombinant proteins induced small, statistically significant Na+-dependent fluxes of uridine and pyruvate but had no effect on choline uptake. In contrast, control oocytes injected with transcripts for conventional nucleoside and cationic amino acid transporters (rat CNT1 and murine CAT1, respectively) showed no induction of transport of either leucine or pyruvate (CNT1) or uridine or pyruvate (CAT1). These findings support the idea that BAT and 4F2hc are transport activators and minimize the possibility that they have intrinsic transport capability. The transport-regulating functions of these proteins may extend to permeants other than amino acids.Key words: amino acid transport, uridine, pyruvate, BAT, 4F2hc, Xenopus oocytes.


1994 ◽  
Vol 196 (1) ◽  
pp. 123-137 ◽  
Author(s):  
M Palacín

The currently identified cDNA clones of mammalian amino acid transporters can be grouped into five different families. One family is composed of the proteins rBAT and the heavy chain (hc) of the cell surface antigen 4F2. RNAs encoding these two proteins induce a system b(o,+)-like (rBAT) and a system y+L-like (4F2hc) activity in Xenopus oocytes. Surprisingly, rBAT and 4F2hc do not seem to be pore-forming proteins. This finding supports the hypothesis that rBAT and 4F2hc are subunits or modulators of the corresponding amino acid transport systems. Expression of rBAT in oocytes induces high-affinity transport of cystine, which is shared with transport of cationic and zwitterionic amino acids. The rBAT gene is expressed mainly in kidney and small intestine. The rBAT protein is localized to the microvilli of proximal straight tubules of the kidney and mucosa from the small intestine. This finding is consistent with the involvement of rBAT in a high-affinity resorption system for cystine in the proximal straight tubule of the nephron. All of these characteristics suggest that rBAT is a good candidate for a cystinuria gene. Cystinuria is an inheritable defect in high-affinity transport of cystine, shared with cationic amino acids, through epithelial cells of the renal tubule and intestinal tract. Very recently, point missense mutations have been found in the rBAT gene of cystinuria patients. The most frequent rBAT mutation, M467T (threonine substitution of methionine at residue 467) nearly abolished the amino acid transport activity elicited by rBAT in oocytes. This result offers convincing evidence that rBAT is a cystinuria gene. Biochemical, cytological and genetic approaches are now needed to delineate the mechanism of action of rBAT and 4F2hc in the transport of amino acids.


Sign in / Sign up

Export Citation Format

Share Document