scholarly journals Travelling wave solutions for a generalized Fisher equation

1982 ◽  
Vol 85 (2) ◽  
pp. 287-290 ◽  
Author(s):  
Mostafa A Abdelkader
2018 ◽  
Vol 3 (2) ◽  
pp. 92-101
Author(s):  
Anika Tashin Khan ◽  
Hasibun Naher

We have generated many new non-travelling wave solutions by executing the new extended generalized and improved (G'/G)-Expansion Method. Here the nonlinear ordinary differential equation with many new and real parameters has been used as an auxiliary equation. We have investigated the Fisher equation to show the advantages and effectiveness of this method. The obtained non-travelling solutions are expressed through the hyperbolic functions, trigonometric functions and rational functional forms. Results showing that the method is concise, direct and highly effective to study nonlinear evolution equations those are in mathematical physics and engineering.


2006 ◽  
Vol 03 (03) ◽  
pp. 371-381 ◽  
Author(s):  
H. A. ABDUSALAM

A generalized tanh-function method is used for constructing exact travelling wave solutions for Nagumo's equation and the modified generalized Burger-Fisher equation. Also new multiple soliton solutions are obtained for both equations. Limit case of the time delay is studied and the results of the general Burgers-Fisher equations are verified.


2021 ◽  
Vol 26 (1) ◽  
pp. 22-30
Author(s):  
Mohammad M. Fares ◽  
Usama M. Abdelsalam ◽  
Faiza M. Allehiany

In this work, the extended homogeneous balance method is used to derive exact solutions of nonlinear evolution equations. With the aid of symbolic computation, many new exact travelling wave solutions have been obtained for Fisher’s equation and Burgers-Fisher equation. Fisher’s equation has been widely used in studying the population for various systems, especially in biology, while Burgers-Fisher equation has many physical applications such as in gas dynamics and fluid mechanics. The method used can be applied to obtain multiple travelling wave solutions for nonlinear partial differential equations.


2020 ◽  
Author(s):  
Miftachul Hadi

We review the work of Ranjit Kumar, R S Kaushal, Awadhesh Prasad. The work is still in progress.


Author(s):  
Andronikos Paliathanasis ◽  
Genly Leon ◽  
P. G. L. Leach

Abstract We apply the Painlevé test for the Benney and the Benney–Gjevik equations, which describe waves in falling liquids. We prove that these two nonlinear 1 + 1 evolution equations pass the singularity test for the travelling-wave solutions. The algebraic solutions in terms of Laurent expansions are presented.


Sign in / Sign up

Export Citation Format

Share Document