Immersion ultrasonic method to measure elastic constants and anisotropic attenuation in polymer-matrix and fiber-reinforced composite materials

Ultrasonics ◽  
1996 ◽  
Vol 34 (2-5) ◽  
pp. 379-382 ◽  
Author(s):  
Sandrine Baudouin ◽  
Bernard Hosten
2018 ◽  
Author(s):  
Karla Rosa Reyes ◽  
Karla Rosa Reyes ◽  
Adriana Pavia Sanders ◽  
Lee Taylor Massey ◽  
Corinne Hagan ◽  
...  

2021 ◽  
pp. 096739112110141
Author(s):  
Ferhat Ceritbinmez ◽  
Ahmet Yapici ◽  
Erdoğan Kanca

In this study, the effect of adding nanosize additive to glass fiber reinforced composite plates on mechanical properties and surface milling was investigated. In the light of the investigations, with the addition of MWCNTs additive in the composite production, the strength of the material has been changed and the more durable composite materials have been obtained. Slots were opened with different cutting speed and feed rate parameters to the composite layers. Surface roughness of the composite layers and slot size were examined and also abrasions of cutting tools used in cutting process were determined. It was observed that the addition of nanoparticles to the laminated glass fiber composite materials played an effective role in the strength of the material and caused cutting tool wear.


Author(s):  
Mohamed Gaith ◽  
Cevdet Akgoz

A new procedure based on constructing orthonormal tensor basis using the form-invariant expressions which can easily be extended to any tensor of rank n. A new decomposition, which is not in literature, of the stress tensor is presented. An innovational general form and more explicit physical property of the symmetric fourth rank elastic tensors is presented. The new method allows to measure the stiffness and piezoelectricity in the elastic fiber reinforced composite and piezoelectric ceramic materials, respecively, using a proposed norm concept on the crystal scale. This method will allow to investigate the effects of fiber orientaion, number of plies, material properties of matrix and fibers, and degree of anisotropy on the stiffness of the structure. The results are compared with those available in the literature for semiconductor compounds, piezoelectric ceramics and fiber reinforced composite materials.


1985 ◽  
Vol 38 (10) ◽  
pp. 1267-1270 ◽  
Author(s):  
R. M. Christensen

Fiber-reinforced composite materials offer considerable performance advantages over conventional materials. New fiber developments place a premium upon understanding the mechanical interactions between phases in order to optimize the composition. Of particular importance are the means of quantifying damage states and predicting nonlinear behavior. Special attention is given to such areas as damage/failure/life prediction, environmental effects, nondestructive evaluation, interface conditions, and data base generation.


Sign in / Sign up

Export Citation Format

Share Document