scholarly journals Semistability at ∞ of finitely generated groups, and solvable groups

1986 ◽  
Vol 24 (1-3) ◽  
pp. 259-269 ◽  
Author(s):  
Michael Mihalik
2018 ◽  
Vol 28 (08) ◽  
pp. 1613-1632 ◽  
Author(s):  
A. G. Myasnikov ◽  
N. S. Romanovskii

In this paper we show that all finitely generated nilpotent, metabelian, polycyclic, and rigid (hence free solvable) groups [Formula: see text] are fully characterized in the class of all groups by the set [Formula: see text] of types realized in [Formula: see text]. Furthermore, it turns out that these groups [Formula: see text] are fully characterized already by some particular rather restricted fragments of the types from [Formula: see text]. In particular, every finitely generated nilpotent group is completely defined by its [Formula: see text]-types, while a finitely generated rigid group is completely defined by its [Formula: see text]-types, and a finitely generated metabelian or polycyclic group is completely defined by its [Formula: see text]-types. We have similar results for some non-solvable groups: free, surface, and free Burnside groups, though they mostly serve as illustrations of general techniques or provide some counterexamples.


2020 ◽  
Vol 108 (5-6) ◽  
pp. 671-678
Author(s):  
D. V. Gusev ◽  
I. A. Ivanov-Pogodaev ◽  
A. Ya. Kanel-Belov

2017 ◽  
Vol 20 (4) ◽  
Author(s):  
Anna Giordano Bruno ◽  
Pablo Spiga

AbstractWe study the growth of group endomorphisms, a generalization of the classical notion of growth of finitely generated groups, which is strictly related to algebraic entropy. We prove that the inner automorphisms of a group have the same growth type and the same algebraic entropy as the identity automorphism. Moreover, we show that endomorphisms of locally finite groups cannot have intermediate growth. We also find an example showing that the Addition Theorem for algebraic entropy does not hold for endomorphisms of arbitrary groups.


Author(s):  
J. A. Gerhard

In the paper (4) of Green and Rees it was established that the finiteness of finitely generated semigroups satisfying xr = x is equivalent to the finiteness of finitely generated groups satisfying xr−1 = 1 (Burnside's Problem). A group satisfying x2 = 1 is abelian and if it is generated by n elements, it has at most 2n elements. The free finitely generated semigroups satisfying x3 = x are thus established to be finite, and in fact the connexion with the corresponding problem for groups can be used to give an upper bound on the size of these semigroups. This is a long way from an algorithm for a solution of the word problem however, and providing such an algorithm is the purpose of the present paper. The case x = x3 is of interest since the corresponding result for x = x2 was done by Green and Rees (4) and independently by McLean(6).


Sign in / Sign up

Export Citation Format

Share Document