Analysis of multicomponent reversible reactions in an isothermal fixed bed reactor with axial dispersion

1984 ◽  
Vol 29 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Ha D. Do ◽  
D.D. Do
2013 ◽  
Vol 11 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Xingxing Cheng ◽  
Xiaotao T. Bi

Abstract A NOx adsorption kinetic model including NO oxidation and adsorption was developed. The NOx and O2 adsorption experimental data from a fixed bed were found to be fitted well to the Freundlich type isotherm. An axial dispersion adsorption model was then developed to simulate the breakthrough curve for NOx adsorption in the fixed bed. The model parameters including mass transfer coefficient and axial dispersion coefficient were fitted from the NOx breakthrough curves measured in a fixed bed. This model can be used for design and scale-up of fixed bed NOx adsorption columns. It can also be extended for the modeling of NOx adsorption in the annulus region of the circulating fluidized bed reactor for catalytic reduction of NOx.


2014 ◽  
Vol 14 (1) ◽  
pp. 25
Author(s):  
Wiwut Tanthapanichakoon ◽  
Shinichi Koda ◽  
Burin Khemthong

Fixed-bed tubular reactors are used widely in chemical process industries, for example, selective hydrogenation of acetylene to ethylene in a naphtha cracking plant. A dynamic model is required when the effect of large fluctuations with time in influent stream (temperature, pressure, flow rate, and/or composition) on the reactor performance is to be investigated or automatically controlled. To predict approximate dynamic behavior of adiabatic selective acetylene hydrogenation reactors, we proposed a simple 1-dimensional model based on residence time distribution (RTD) effect to represent the cases of plug flow without/with axial dispersion. By modeling the nonideal flow regimes as a number of CSTRs (completely stirred tank reactors) in series to give not only equivalent RTD effect but also theoretically the same dynamic behavior in the case of isothermal first-order reactions, the obtained simple dynamic model consists of a set of nonlinear ODEs (ordinary differential equations), which can simultaneously be integrated using Excel VBA (Visual BASIC Applications) and 4th-order Runge-Kutta algorithm. The effects of reactor inlet temperature, axial dispersion, and flow rate deviation on the dynamic behavior of the system were investigated. In addition, comparison of the simulated effects of flow rate deviation was made between two industrial-size reactors.Keywords: Dynamic simulation, 1-D model, Adiabatic reactor, Acetylene hydrogenation, Fixed-bed reactor, Axial dispersion effect


1995 ◽  
Vol 31 (9) ◽  
pp. 137-144 ◽  
Author(s):  
T. Miyahara ◽  
M. Takano ◽  
T. Noike

The relationship between the filter media and the behaviour of anaerobic bacteria was studied using anaerobic fixed-bed reactors. At an HRT of 48 hours, the number of suspended acidogenic bacteria was higher than those attached to the filter media. On the other hand, the number of attached methanogenic bacteria was more than ten times as higher than that of suspended ones. The numbers of suspended and deposited acidogenic and methanogenic bacteria in the reactor operated at an HRT of 3 hours were almost the same as those in the reactor operated at an HRT of 48 hours. Accumulation of attached bacteria was promoted by decreasing the HRT of the reactor. The number of acidogenic bacteria in the reactor packed sparsely with the filter media was higher than that in the closely packed reactor. The number of methanogenic bacteria in the sparsely packed reactor was lower than that in the closely packed reactor.


Sign in / Sign up

Export Citation Format

Share Document