Synaptic dysfunction in early phases of Alzheimer's Disease

2022 ◽  
pp. 417-438
Author(s):  
Silvia Pelucchi ◽  
Fabrizio Gardoni ◽  
Monica Di Luca ◽  
Elena Marcello
2021 ◽  
pp. 1-16
Author(s):  
Wei Wei ◽  
Yinghua Liu ◽  
Chunling Dai ◽  
Narjes Baazaoui ◽  
Yunn-Chyn Tung ◽  
...  

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by impairments in synaptic plasticity and cognitive performance. Cognitive dysfunction and loss of neuronal plasticity are known to begin decades before the clinical diagnosis of the disease. The important influence of congenital genetic mutations on the early development of AD provides a novel opportunity to initiate treatment during early development to prevent the Alzheimer-like behavior and synaptic dysfunction. Objective: To explore strategies for early intervention to prevent Alzheimer’s disease. Methods: In the present study, we investigated the effect of treatment during early development with a ciliary neurotrophic factor (CNTF) derived peptidergic compound, P021 (Ac-DGGLAG-NH2) on cognitive function and synaptic plasticity in 3xTg-AD transgenic mouse model of AD. 3xTg-AD and genetic background-matched wild type female mice were treated from birth to postnatal day 120 with P021 in diet or as a control with vehicle diet, and cognitive function and molecular markers of neuroplasticity were evaluated. Results: P021 treatment during early development prevented cognitive impairment and increased expressions of pCREB and BDNF that activated downstream various signaling cascades such as PLC/PKC, MEK/ERK and PI3K/Akt, and ameliorated synaptic protein deficit in 4-month-old 3xTg-AD mice. Conclusion: These findings indicate that treatment with the neurotrophic peptide mimetic such as P021 during early development can be an effective therapeutic strategy to rescue synaptic deficit and cognitive impairment in familial AD and related tauopathies.


2014 ◽  
Vol 42 (5) ◽  
pp. 1321-1325 ◽  
Author(s):  
Emma C. Phillips ◽  
Cara L. Croft ◽  
Ksenia Kurbatskaya ◽  
Michael J. O’Neill ◽  
Michael L. Hutton ◽  
...  

Increased production of amyloid β-peptide (Aβ) and altered processing of tau in Alzheimer's disease (AD) are associated with synaptic dysfunction, neuronal death and cognitive and behavioural deficits. Neuroinflammation is also a prominent feature of AD brain and considerable evidence indicates that inflammatory events play a significant role in modulating the progression of AD. The role of microglia in AD inflammation has long been acknowledged. Substantial evidence now demonstrates that astrocyte-mediated inflammatory responses also influence pathology development, synapse health and neurodegeneration in AD. Several anti-inflammatory therapies targeting astrocytes show significant benefit in models of disease, particularly with respect to tau-associated neurodegeneration. However, the effectiveness of these approaches is complex, since modulating inflammatory pathways often has opposing effects on the development of tau and amyloid pathology, and is dependent on the precise phenotype and activities of astrocytes in different cellular environments. An increased understanding of interactions between astrocytes and neurons under different conditions is required for the development of safe and effective astrocyte-based therapies for AD and related neurodegenerative diseases.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Takayuki Suzuki ◽  
Kazuma Murakami ◽  
Naotaka Izuo ◽  
Toshiaki Kume ◽  
Akinori Akaike ◽  
...  

Oligomers of 40- or 42-mer amyloidβ-protein (Aβ40, Aβ42) cause cognitive decline and synaptic dysfunction in Alzheimer's disease. We proposed the importance of a turn at Glu22 and Asp23 of Aβ42 to induce its neurotoxicity through the formation of radicals. Recently, a novel deletion mutant at Glu22 (E22Δ) of Aβ42 was reported to accelerate oligomerization and synaptotoxicity. To investigate this mechanism, the effects of the E22Δ mutation in Aβ42 and Aβ40 on the transformation ofβ-sheets, radical production, and neurotoxicity were examined. Both mutants promotedβ-sheet transformation and the formation of radicals, while their neurotoxicity was negative. In contrast, E22P-Aβ42 with a turn at Glu22 and Asp23 exhibited potent neurotoxicity along with the ability to form radicals and potent synaptotoxicity. These data suggest that conformational change in E22Δ-Aβis similar to that in E22P-Aβ42 but not the same, since E22Δ-Aβ42 exhibited no cytotoxicity, unlike E22P-Aβ42 and wild-type Aβ42.


2018 ◽  
Vol 39 (4) ◽  
pp. 758-772 ◽  
Author(s):  
Santiago V. Salazar ◽  
Timothy O. Cox ◽  
Suho Lee ◽  
A. Harrison Brody ◽  
Annabel S. Chyung ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3261
Author(s):  
Xiao Liu ◽  
Qian Zhou ◽  
Jia-He Zhang ◽  
Xiaoying Wang ◽  
Xiumei Gao ◽  
...  

Alzheimer’s disease (AD), the most common form of dementia, is characterized by amyloid-β (Aβ) accumulation, microglia-associated neuroinflammation, and synaptic loss. The detailed neuropathologic characteristics in early-stage AD, however, are largely unclear. We evaluated the pathologic brain alterations in young adult App knock-in model AppNL-G-F mice at 3 and 6 months of age, which corresponds to early-stage AD. At 3 months of age, microglia expression in the cortex and hippocampus was significantly decreased. By the age of 6 months, the number and function of the microglia increased, accompanied by progressive amyloid-β deposition, synaptic dysfunction, neuroinflammation, and dysregulation of β-catenin and NF-κB signaling pathways. The neuropathologic changes were more severe in female mice than in male mice. Oral administration of dioscin, a natural product, ameliorated the neuropathologic alterations in young AppNL-G-F mice. Our findings revealed microglia-based sex-differential neuropathologic changes in a mouse model of early-stage AD and therapeutic efficacy of dioscin on the brain lesions. Dioscin may represent a potential treatment for AD.


2010 ◽  
Vol 30 (49) ◽  
pp. 16419-16428 ◽  
Author(s):  
T. G. Oliveira ◽  
R. B. Chan ◽  
H. Tian ◽  
M. Laredo ◽  
G. Shui ◽  
...  

2014 ◽  
Vol 24 (2) ◽  
pp. 117-121
Author(s):  
P Gil-Gregorio ◽  
R Yubero-Pancorbo

SummaryRecently, diagnostic criteria for preclinical Alzheimer's disease have been proposed. These describe and define three stages of disease. Stage I is focused on asymptomatic cerebral amyloidosis. Stage II includes evidence of synaptic dysfunction and/or early degeneration. Finally, stage III of the disease is characterized by the beginning of cognitive decline.


Aging Cell ◽  
2018 ◽  
Vol 17 (4) ◽  
pp. e12791 ◽  
Author(s):  
David Baglietto-Vargas ◽  
Gilberto Aleph Prieto ◽  
Agenor Limon ◽  
Stefania Forner ◽  
Carlos J. Rodriguez-Ortiz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document