Water Footprint Assessment: towards water-wise food systems

2022 ◽  
pp. 63-88
Author(s):  
Joep F. Schyns ◽  
Rick J. Hogeboom ◽  
Maarten S. Krol
Keyword(s):  
Author(s):  
Mieghan Bruce ◽  
Camille Bellet ◽  
Jonathan Rushton

Beef production is considered to have a large water footprint, with values ranging from 3.3 to 75,000 L H20/kg. The water consumption in beef production is primarily associated with feed, estimated to be about 98%, with other requirements representing less than 1%. However, beef production is a complex system where cattle are often raised in different areas using a range of resources over their lifetime. This complexity is demonstrated using three countries with very different environments and production systems, namely Australia, Brazil, and Kenya. To achieve efficient water use in beef systems, and food systems more generally, a classification system that reflects how animals are managed, slaughtered, and processed is required. Methods for assessing water use in livestock systems, from production to consumption, need to be standardized, whilst also including the alternative uses, multiple uses, and benefits of a certain resource in a specific location.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1021
Author(s):  
Aixi Han ◽  
Li Chai ◽  
Xiawei Liao

Dietary improvement not only benefits human health conditions, but also offers the potential to reduce the human food system’s environmental impact. With the world’s largest population and people’s bourgeoning lifestyle, China’s food system is set to impose increasing pressures on the environment. We evaluated the minimum environmental footprints, including carbon footprint (CF), water footprint (WF) and ecological footprint (EF), of China’s food systems into 2100. The minimum footprints of healthy eating are informative to policymakers when setting the environmental constraints for food systems. The results demonstrate that the minimum CF, WF and EF all increase in the near future and peak around 2030 to 2035, under different population scenarios. After the peak, population decline and aging result in decreasing trends of all environmental footprints until 2100. Considering age-gender specific nutritional needs, the food demands of teenagers in the 14–17 year group require the largest environmental footprints across the three indicators. Moreover, men’s nutritional needs also lead to larger environmental footprints than women’s across all age groups. By 2100, the minimum CF, WF and EF associated with China’s food systems range from 616 to 899 million tons, 654 to 953 km3 and 6513 to 9500 billion gm2 respectively under different population scenarios. This study builds a bridge between demography and the environmental footprints of diet and demonstrates that the minimum environmental footprints of diet could vary by up to 46% in 2100 under different demographic scenarios. The results suggest to policymakers that setting the environmental constraints of food systems should be integrated with the planning of a future demographic path.


Author(s):  
Daniel H. Pope ◽  
Johan O. Karlsson ◽  
Phillip Baker ◽  
David McCoy

Food systems are increasingly being understood as driving various health and ecological crises and their transformation is recognised as a key opportunity for planetary health. First-food systems represent an underexplored aspect of this transformation. Despite breastfeeding representing the optimal source of infant nutrition, use of commercial milk formula (CMF) is high and growing rapidly. In this review, we examine the impact of CMF use on planetary health, considering in particular its effects on climate change, water use and pollution and the consequences of these effects for human health. Milk is the main ingredient in the production of CMF, making the role of the dairy sector a key area of attention. We find that CMF use has twice the carbon footprint of breastfeeding, while 1 kg of CMF has a blue water footprint of 699 L; CMF has a significant and harmful environmental impact. Facilitation and protection of breastfeeding represents a key part of developing sustainable first-food systems and has huge potential benefits for maternal and child health.


Food Security ◽  
2021 ◽  
Author(s):  
Catharien Terwisscha van Scheltinga ◽  
Angel de Miguel Garcia ◽  
Gert-Jan Wilbers ◽  
Hanneke Heesmans ◽  
Rutger Dankers ◽  
...  

AbstractFood system analysis in arid and semi-arid countries inevitably meets water availability as a major constraining food system driver. Many such countries are net food importers using food subsidy systems, as water resources do not allow national food self-sufficiency. As this leaves countries in a position of dependency on international markets, prices and export bans, it is imperative that every domestic drop of water is used efficiently. In addition, policies can be geared towards ‘water footprints’, where water use efficiency is not just evaluated at the field level but also at the level of trade and import/export. In this paper, Egyptian food systems are described based on production, distribution and consumption statistics, key drivers and food system outcomes, i.e., health, sustainable land and water use, and inclusiveness. This is done for three coarsely defined Egyptian food systems: traditional, transitional and modern. A water footprint analysis then shows that for four MENA countries, differences occur between national green and blue water volumes, and the volumes imported through imported foods. Egypt has by far the largest blue water volume, but on a per capita basis, other countries are even more water limited. Then for Egypt, the approach is applied to the wheat and poultry sectors. They show opportunities but also limitations when it comes to projected increased water and food needs in the future. An intervention strategy is proposed that looks into strategies to get more out of the food system components production, distribution and consumption. On top of that food subsidy policies as well as smart water footprint application may lead to a set of combined policies that may lead to synergies between the three food system outcomes, paving the way to desirable food system transformation pathways.


Author(s):  
Jean Fincher

An important trend in the food industry today is reduction in the amount of fat in manufactured foods. Often fat reduction is accomplished by replacing part of the natural fat with carbohydrates which serve to bind water and increase viscosity. It is in understanding the roles of these two major components of food, fats and carbohydrates, that freeze-fracture is so important. It is well known that conventional fixation procedures are inadequate for many food products, in particular, foods with carbohydrates as a predominant structural feature. For some food science applications the advantages of freeze-fracture preparation procedures include not only the avoidance of chemical fixatives, but also the opportunity to control the temperature of the sample just prior to rapid freezing.In conventional foods freeze-fracture has been used most successfully in analysis of milk and milk products. Milk gels depend on interactions between lipid droplets and proteins. Whipped emulsions, either whipped cream or ice cream, involve complex interactions between lipid, protein, air cell surfaces, and added emulsifiers.


2015 ◽  
Vol 15 (3) ◽  
pp. 33-39 ◽  
Author(s):  
David Evans

This paper considers the relationship between social science and the food industry, and it suggests that collaboration can be intellectually productive and morally rewarding. It explores the middle ground that exists between paid consultancy models of collaboration on the one hand and a principled stance of nonengagement on the other. Drawing on recent experiences of researching with a major food retailer in the UK, I discuss the ways in which collaborating with retailers can open up opportunities for accessing data that might not otherwise be available to social scientists. Additionally, I put forward the argument that researchers with an interest in the sustainability—ecological or otherwise—of food systems, especially those of a critical persuasion, ought to be empirically engaging with food businesses. I suggest that this is important in terms of generating better understandings of the objectionable arrangements that they seek to critique, and in terms of opening up conduits through which to affect positive changes. Cutting across these points is the claim that while resistance to commercial engagement might be misguided, it is nevertheless important to acknowledge the power-geometries of collaboration and to find ways of leveling and/or leveraging them. To conclude, I suggest that universities have an important institutional role to play in defining the terms of engagement as well as maintaining the boundaries between scholarship and consultancy—a line that can otherwise become quite fuzzy when the worlds of commerce and academic research collide.


Author(s):  
Lori Stahlbrand

This paper traces the partnership between the University of Toronto and the non-profit Local Food Plus (LFP) to bring local sustainable food to its St. George campus. At its launch, the partnership represented the largest purchase of local sustainable food at a Canadian university, as well as LFP’s first foray into supporting institutional procurement of local sustainable food. LFP was founded in 2005 with a vision to foster sustainable local food economies. To this end, LFP developed a certification system and a marketing program that matched certified farmers and processors to buyers. LFP emphasized large-scale purchases by public institutions. Using information from in-depth semi-structured key informant interviews, this paper argues that the LFP project was a disruptive innovation that posed a challenge to many dimensions of the established food system. The LFP case study reveals structural obstacles to operationalizing a local and sustainable food system. These include a lack of mid-sized infrastructure serving local farmers, the domination of a rebate system of purchasing controlled by an oligopolistic foodservice sector, and embedded government support of export agriculture. This case study is an example of praxis, as the author was the founder of LFP, as well as an academic researcher and analyst.


2018 ◽  
Vol 12 (2) ◽  
pp. 60-63
Author(s):  
Mariana Sandu ◽  
Stefan Mantea

Abstract Agri-food systems include branching ramifications, which connect in the upstream the input suppliers with farmers, and downstream farmers, processors, retailers and consumers. In the last decades, at the level of the regions, food systems have undergone rapid transformation as a result of technological progress. The paper analyzes the changes made to the structure, behavior and performance of the agri-food system and the impact on farmers and consumers. Also, the role of agricultural research as a determinant factor of transformation of agri-food system is analyzed. The research objective is to develop technologies that cover the entire food chain (from farm to fork) and meet the specific requirements of consumers (from fork to farm) through scientific solutions in line with the principles of sustainable agriculture and ensuring the safety and food safety of the population.


Sign in / Sign up

Export Citation Format

Share Document