Current development, application and constraints of biopesticides in plant disease management

2022 ◽  
pp. 207-224
Author(s):  
Shweta Meshram ◽  
Sunaina Bisht ◽  
Robin Gogoi
2021 ◽  
Vol 23 (6) ◽  
pp. 2531-2540
Author(s):  
Gang Tang ◽  
Yuyang Tian ◽  
Junfan Niu ◽  
Jingyue Tang ◽  
Jiale Yang ◽  
...  

The utilization of nanotechnology for the design of pesticide formulations has enormous potential to enhance the efficiency of pesticides and reduce their adverse impacts on the environment


2013 ◽  
Vol 46 (12) ◽  
pp. 1430-1441 ◽  
Author(s):  
A. Karthikeyan ◽  
M. Deivamani ◽  
V.G. Shobhana ◽  
M. Sudha ◽  
T. Anandhan

2021 ◽  
pp. 129461
Author(s):  
Zeinab Qazanfarzadeh ◽  
Seyedeh Fatemeh Mirpoor ◽  
Mahdi Kadivar ◽  
Hajar Shekarchizadeh ◽  
Rocco Di Girolamo ◽  
...  

2021 ◽  
Author(s):  
Lulu Qiao ◽  
Chi Lan ◽  
Luca Capriotti ◽  
Audrey Ah-Fong ◽  
Jonatan Nino Sanchez ◽  
...  

AbstractRecent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray-Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non-pathogenic fungi, and an oomycete pathogen. We observed efficient double-stranded RNA (dsRNA) uptake in the fungal plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Aspergillus niger, and Verticillium dahliae, but no uptake in Colletotrichum gloeosporioides, and weak uptake in a beneficial fungus, Trichoderma virens. For the oomycete plant pathogen, Phytophthora infestans, RNA uptake was limited, and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence-related genes in the pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen RNA uptake efficiency.


Sign in / Sign up

Export Citation Format

Share Document