Applications of human induced pluripotent stem cell and human embryonic stem cell models for substance use disorders

2022 ◽  
pp. 153-177
Author(s):  
Kristen L. Boeshore ◽  
Chun-Ting Lee ◽  
William J. Freed
2010 ◽  
Vol 363 (15) ◽  
pp. 1397-1409 ◽  
Author(s):  
Alessandra Moretti ◽  
Milena Bellin ◽  
Andrea Welling ◽  
Christian Billy Jung ◽  
Jason T. Lam ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Wenyi Chen ◽  
Johannes Riegler ◽  
Elena Matsa ◽  
Qi Shen ◽  
Haodi Wu ◽  
...  

Introduction: Both human embryonic stem cell-derived cardiomyocytes (ESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) can serve as an unlimited cell source for cardiac regenerative therapy. However, the functional equivalency of both approaches has not been previously reported. Here we performed head-to-head comparison on the beneficial effects of ESC-CM and iPSC-CMs in restoring cardiac function in a rat myocardial infarction (MI) model. Methods & Results: Human ESCs and iPSCs were differentiated into cardiomyocytes using small molecules. FACS analysis confirmed ~85% and ~83% of cells differentiated from ESCs and iPSCs, respectively, were positive for cardiac troponin T, and immunofluorescence staining demonstrated that ESC-CMs and iPSC-CMs have striated sarcomeric structure (Figure A-B). Both ESC-CMs and iPSC-CMs displayed similar maturity for calcium handling (transient amplitude: ΔF/F 0 = 3.8±0.3; time to peak: ~200 ms; 50% transient duration: ~400 ms). qRT-PCR showed that ESC-CMs and iPSC-CMs expressed CASQ2, GJA5, KCNJ2, KCNJ5, MYH6, MYH7, and SCN5A at comparable levels to human fetal heart tissue. Next, ESC-CMs and iPSC-CMs were injected into the left ventricular free wall of infarcted hearts (adult nude rats; n=14, 10, respectively). Cardiac function was assessed by MRI one month post cell injection and the hearts were harvested and stained for human cardiac markers. Both ESC-CMs and iPSC-CMs could engraft in ischemic rat hearts (Figure C). Comprehensive functional analysis with small animal magnetic resonance imaging (MRI), echocardiography, and pressure-volume loop analysis are underway. Conclusion: We set out to perform head to head comparison for the first time that iPSC-CMs may facilitate cardiac repair at comparable levels to ESC-CMs. Unlike allogeneic ESC-CM therapy, autologous iPSC-CMs could be used to overcome immune rejection for cardiac cell transplantation in the future.


2020 ◽  
Vol 132 ◽  
pp. 104042 ◽  
Author(s):  
Raleigh M. Linville ◽  
Diego Arevalo ◽  
Joanna C. Maressa ◽  
Nan Zhao ◽  
Peter C. Searson

2012 ◽  
Vol 17 (5) ◽  
pp. 683-691 ◽  
Author(s):  
Tadahiro Shinozawa ◽  
Hatsue Furukawa ◽  
Eimei Sato ◽  
Kenji Takami

Cardiomyocytes derived from embryonic stem cells (ES-CMs) and induced pluripotent stem cells (iPS-CMs) are useful for toxicity and pharmacology screening. In the present study, we found that cardiomyocyte-rich beating cell clusters (CCs) emerged from murine embryonic stem cell (mESC)–derived beating EBs and from human-induced pluripotent stem cell (hiPSC)–derived beating EBs dissociated by gentle pipetting with a thin glass pipette. The percentage of cardiac troponin T (cTnT)–positive cells in the beating CCs obtained from mESC-derived and hiPSC-derived beating EBs was higher (81.5% and 91.6%, respectively) than in beating-undissociated EBs (13.7% and 67.1%, respectively). For mESCs, the yield of cTnT-positive cells from beating CCs was estimated to be 1.6 times higher than that of beating EBs. The bromodeoxyuridine labeling index of mouse ES-CMs and human iPS-CMs in beating CCs was 1.5- and 3.2-fold, respectively, greater than those in beating EBs. To investigate the utility of the cells in toxicity assessment, we showed that doxorubicin, a cardiotoxic drug, induced myofilament disruption in cardiomyocytes isolated by this method. This simple method enables preparation of mouse ES-CMs and human iPS-CMs with better proliferative activity than beating EBs not dissociated by pipetting, and the cardiomyocytes are useful for drug-induced myocardial toxicity testing.


2017 ◽  
Vol 177 ◽  
pp. 32-43 ◽  
Author(s):  
Sandy S.C. Hung ◽  
Shahnaz Khan ◽  
Camden Y. Lo ◽  
Alex W. Hewitt ◽  
Raymond C.B. Wong

Sign in / Sign up

Export Citation Format

Share Document