Exploring the ability of cyanobacterial ferric uptake regulator (FUR) proteins to increase yeast tolerance to abiotic stresses

2022 ◽  
pp. 179-196
Author(s):  
Violeta C. Sein-Echaluce ◽  
José Miguel Mulet ◽  
María V. Barja ◽  
M. Luisa Peleato ◽  
María F. Fillat
2010 ◽  
Vol 32 (8) ◽  
pp. 839-847 ◽  
Author(s):  
Ying-Ping CAO ◽  
Jin-Lei SHI ◽  
Zhong LI ◽  
Feng MING

2013 ◽  
Vol 38 (2) ◽  
pp. 360-368
Author(s):  
Xia SUN ◽  
Jin-Yue LIU ◽  
Xiao-Hui YUAN ◽  
Xiang-Wen PAN ◽  
Wei-Guang DU ◽  
...  

Author(s):  
Mohammad Faizan ◽  
Fangyuan Yu ◽  
Chen Chen ◽  
Ahmad Faraz ◽  
Shamsul Hayat

: Abiotic stresses arising from atmosphere change belie plant growth and yield, leading to food reduction. The cultivation of a large number of crops in the contaminated environment is a main concern of environmentalists in the present time. To get food safety, a highly developed nanotechnology is a useful tool for promoting food production and assuring sustainability. Nanotechnology helps to better production in agriculture by promoting the efficiency of inputs and reducing relevant losses. This review examines the research performed in the past to show how zinc oxide nanoparticles (ZnO-NPs) are influencing the negative effects of abiotic stresses. Application of ZnO-NPs is one of the most effectual options for considerable enhancement of agricultural yield globally under stressful conditions. ZnO-NPs can transform the agricultural and food industry with the help of several innovative tools in reversing oxidative stress symptoms induced by abiotic stresses. In addition, the effect of ZnO-NPs on physiological, biochemical, and antioxidative activities in various plants have also been examined properly. This review summarizes the current understanding and the future possibilities of plant-ZnO-NPs research.


Sign in / Sign up

Export Citation Format

Share Document