A framework for optimised sustainable solvent mixture and separation process design

Author(s):  
Eduardo Sánchez-Ramírez ◽  
Jaime D. Ponce-Rocha ◽  
Juan G. Segovia-Hernández ◽  
Fernando I. Gómez-Castro ◽  
Ricardo Morales-Rodriguez
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Suksun Amornraksa ◽  
Ittipat Subsaipin ◽  
Lida Simasatitkul ◽  
Suttichai Assabumrungrat

Abstract Separation process is very crucial in bioethanol production as it consumes the highest energy in the process. Unlike other works, this research systematically designed a suitable separation process for bioethanol production from corn stover by using thermodynamic insight. Two separation processes, i.e., extractive distillation (case 2) and pervaporation (case 3), were developed and compared with conventional molecular sieve (case 1). Process design and simulation were done by using Aspen Plus program. The process evaluation was done not only in terms of energy consumption and process economics but also in terms of environmental impacts. It was revealed that pervaporation is the best process in all aspects. Its energy consumption and carbon footprint are 60.8 and 68.34% lower than case 1, respectively. Its capital and production costs are also the lowest, 37.0 and 9.88% lower than case 1.


Author(s):  
A.I Usenu

The rate of Soybean (Glycine max) oil (SBO) extraction with a ternary solvent mixture (water, ethanol, and ethyl acetate) optimised with I-optimal Design (IOD) under the Mixture Methodology of the Design Expert (12.0.1.0). The data obtained were analysed statistically. The effect of extraction time (60-180 mins) and temperature (65-70 °C) on SBO was investigated and data obtained were used to evaluate the suitable kinetic and thermodynamic properties of the extraction. The maximum Rate of Oil Yield (32.35 mg/min) was achieved at the solvent mixture of 9.17% water, 6.67% ethanol, and 84.17% ethyl acetate. The Quadratic model best describes the Rate of Oil Yield, with a correlation coefficient (R2) of 0.9922 and an Adjusted R2 of 0.9825. The rate equation for the extraction process is a first-order reaction with ‘n’ value of 1.12756 (≅1.000) while the activation energy (Ea) and Arrhenius constant were 6508.1 kJ/mol and 38.901 s-1, respectively. The study has demonstrated the suitability of I-Optimal Design for the investigation of the Rate of Oil Yield from soybean and the result could be employed in oil extraction process design.


2019 ◽  
Vol 36 (1) ◽  
pp. 67-105 ◽  
Author(s):  
Zhongyi Jiang ◽  
Liangyin Chu ◽  
Xuemei Wu ◽  
Zhi Wang ◽  
Xiaobin Jiang ◽  
...  

Abstract During the past two decades, research on membrane and membrane-based separation process has developed rapidly in water treatment, gas separation, biomedicine, biotechnology, chemical manufacturing and separation process integration. In China, remarkable progresses on membrane preparation, process development and industrial application have been made with the burgeoning of the domestic economy. This review highlights the recent development of advanced membranes in China, such as smart membranes for molecular-recognizable separation, ion exchange membrane for chemical productions, antifouling membrane for liquid separation, high-performance gas separation membranes and the high-efficiency hybrid membrane separation process design, etc. Additionally, the applications of advanced membranes, relevant devices and process design strategy in chemical engineering related fields are discussed in detail. Finally, perspectives on the future research directions, key challenges and issues in membrane separation are concluded.


2014 ◽  
Vol 53 (13) ◽  
pp. 5582-5589 ◽  
Author(s):  
Chandrakant R. Malwade ◽  
Haiyan Qu ◽  
Ben-Guang Rong ◽  
Lars P. Christensen

2017 ◽  
Vol 2 (2) ◽  
pp. 166 ◽  
Author(s):  
Lupete K Bhullar ◽  
Zulpan Adi Putra

A chemical company has identified that Butyl Cellosolve Acetate (BCA) and EO-3 Phosphate Ester (EO-3 PE) esters have significant potential in a large variety of applications. However, there is limited information in existing practices involving these particular grades of esters. Hence, the aim of the present work is to develop the process design for the production of these two esters. Within the development stage, the technical and economic challenges of the production processes are evaluated and compared. The results show that, among other things, the BCA process shows the formation of azeotropic mixtures which causes the separation process to be difficult. On the other hand, EO-3 PE shows the formation of aqueous phosphoric acid that is also difficult to separate. Fortunately, this aqueous phosphoric acid can be sold, which then increase the economic attractiveness of the developed process. Monte Carlo simulation were performed to account some uncertainties such as CAPEX estimate, raw material prices and product prices. This simulation shows that the developed BCA process has a significant chance to be non-profitable, while the economic potential of the EO-3 PE process is at least 200% higher than that of the BCA process in all scenarios.


2016 ◽  
Vol 880 ◽  
pp. 7-10 ◽  
Author(s):  
Wei Ming Soh ◽  
Jully Tan ◽  
Jerry Y.Y. Heng ◽  
Christopher Cheeseman

Coal fly ash is a complex mixture of anthropogenic materials produced during the combustion of pulverised coal in coal fired power plants. They pose environmental concerns that lead to air and water pollution. Effort has been done to reduce the production of coal fly ash or to extract potentially valuable products from coal fly ash, such as cenospheres. Cenospheres are light, low density, thin-walled hollow ceramic microsphere with unique properties. Conventional cenosphere production methods involve the separation of cenospheres from coal fly ash. Due to its small quantities in fly ash (1 % wt.), separation process results in low production of cenospheres. In this work, an attempt by applying a vertical thermal flame (VTF) process is done to produce cenospheres from coal fly ash. Particle size of coal fly ash 63 to 90 μm and 90 to 126 μm are selected to undergo the VTF process. Effect of size of precursor, number of passes through the thermal process, density, morphology and particles size of generated spheres are evaluated. The results show that different sizes of coal fly ash and number of passes through the VTF process affect the morphology of obtained spheres and the overall real density. Further optimization of the VTF process design in terms of heat source and the feeding mechanism are required to increase the transformation of coal fly ash to cenospheres.


Sign in / Sign up

Export Citation Format

Share Document