Internal stress and adhesion of thin films sputtered onto glass by an in-line sputtering system

1999 ◽  
pp. 291-294
Author(s):  
S. Suzuki
Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 397
Author(s):  
Yu-Chen Chang ◽  
Ying-Chung Chen ◽  
Bing-Rui Li ◽  
Wei-Che Shih ◽  
Jyun-Min Lin ◽  
...  

In this study, piezoelectric zinc oxide (ZnO) thin film was deposited on the Pt/Ti/SiNx/Si substrate to construct the FBAR device. The Pt/Ti multilayers were deposited on SiNx/Si as the bottom electrode and the Al thin film was deposited on the ZnO piezoelectric layer as the top electrode by a DC sputtering system. The ZnO thin film was deposited onto the Pt thin film by a radio frequency (RF) magnetron sputtering system. The cavity on back side for acoustic reflection of the FBAR device was achieved by KOH solution and reactive ion etching (RIE) processes. The crystalline structures and surface morphologies of the films were analyzed by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The optimized as-deposited ZnO thin films with preferred (002)-orientation were obtained under the sputtering power of 80 W and sputtering pressure of 20 mTorr. The crystalline characteristics of ZnO thin films and the frequency responses of the FBAR devices can be improved by using the rapid thermal annealing (RTA) process. The optimized annealing temperature and annealing time are 400 °C and 10 min, respectively. Finally, the FBAR devices with structure of Al/ZnO/Pt/Ti/SiNx/Si were fabricated. The frequency responses showed that the return loss of the FBAR device with RTA annealing was improved from −24.07 to −34.66 dB, and the electromechanical coupling coefficient (kt2) was improved from 1.73% to 3.02% with the resonance frequency of around 3.4 GHz.


2010 ◽  
Vol 97-101 ◽  
pp. 1768-1771 ◽  
Author(s):  
Dong Hun Kim ◽  
Riichi Murakami ◽  
Yun Hae Kim ◽  
Kyung Man Moon ◽  
Seung Jung An ◽  
...  

In order to study the characteristics of multilayer thin films with a ZnO/ metal/ ZnO structure the manufacture of the thin films was performed by a dc (direct current) magnetron sputtering system on slide glass substrates. The ZnO thin films were manufactured with the thicknesses of 30 nm and 50 nm. Three kinds of metals (Ag, Al and Cu) were deposited with the thicknesses of 4 nm, 8 nm, 12 nm and 16 nm. The electrical and optical properties of the manufactured thin films were then observed. As a result, the multilayer thin films with an Ag layer represented the most excellent electrical conductivity. This is due to the difference in the fundamental electrical properties of each of the metals. The structures of the metal particles deposited on the ZnO thin films were observed by an SEM (scanning electron microscope). The thin films exhibited a continuous structure with regular spaces between the metal particles. This resulted in an increase of transmittance. This is considered by the decrease of scattering and of light absorption on thin films with a continuous structure.


2010 ◽  
Vol 10 (3) ◽  
pp. S463-S467 ◽  
Author(s):  
Kyu Ung Sim ◽  
Seung Wook Shin ◽  
A.V. Moholkar ◽  
Jae Ho Yun ◽  
Jong Ha Moon ◽  
...  

Vacuum ◽  
1998 ◽  
Vol 51 (4) ◽  
pp. 761-764 ◽  
Author(s):  
Katsunori Nakajima, ◽  
Ken-ichi Onisawa ◽  
Ken-ichi Chahara ◽  
Tetsuroh Minemura ◽  
Mitsuhiro Kamei ◽  
...  

1994 ◽  
Vol 343 ◽  
Author(s):  
Hideo Miura ◽  
Asao Nishimura

ABSTRACTInternal stress change of phosphorus-doped silicon thin films during crystallization is measured by detecting substrate curvature change using a scanning laser microscope. The films are deposited in an amorphous phase by chemical vapor deposition using Si2H6 gas. The deposited films have compressive stress of about 200 MPa. The internal stress changes significantly to a tensile stress of about 800 MPa at about 600 °C due to shrinkage of the films during crystallization. The high tensile stress can be relaxed by annealing above 800 °C. The phosphorus doping changes the crystallization process of the films and their final residual stress.


2007 ◽  
Vol 124-126 ◽  
pp. 119-122 ◽  
Author(s):  
Chang Sik Son ◽  
Jae Sung Hur ◽  
Byoung Hoon Lee ◽  
Sang Yul Back ◽  
Jeong Seop Lee ◽  
...  

Multi-component ZnO-In2O3-SnO2 thin films have been prepared by RF magnetron co-sputtering using targets composed of In4Sn3O12(99.99%) [1] and ZnO(99.99%) at room temperature. In4Sn3O12 contains less In than commercial ITO, so that it lowers cost. Working pressure was held at 3 mtorr flowing Ar gas 20 sccm and sputtering time was 30 min. RF power ratio [RF1 / ( RF1 + RF2 )] of two guns in sputtering system was varied from 0 to 1. Each RF power was varied 0~100W respectively. The thicknesses of the films were 350~650nm. The composition concentrations of the each film were measured with EPMA and AES. The low resistivity of 1-2 × 10-3 and an average transmittance above 80% in the visible range were attained for the films over a range of δ (0.3 ≤ δ ≤ 0.5). The films also showed a high chemical stability with time and a good uniformity.


2007 ◽  
Vol 561-565 ◽  
pp. 1161-1164
Author(s):  
Xiao Na Li ◽  
Bing Hu ◽  
Chuang Dong ◽  
Xin Jiang

Fe/Si multi-layer films were fabricated on Si (100) substrates utilizing radio frequency magnetron sputtering system. Si/β-FeSi2 structure was found in the films after the deposition. Structural characterization of Fe-silicide sample was performed by transmission electron microscopy, to explore the dependence of the microstructure of β-FeSi2 film on the preparation parameters. It was found that β-FeSi2 particles were formed after the deposition without annealing, whose size is less than 20nm ,with a direct band-gap of 0.94eV in room temperature. After annealing at 850°C, particles grow lager, however the stability of thin films was still good.


2018 ◽  
Vol 348 ◽  
pp. 159-167 ◽  
Author(s):  
M. Trant ◽  
M. Fischer ◽  
K. Thorwarth ◽  
S. Gauter ◽  
J. Patscheider ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document