Driver operational level identification of driving risk and graded time-based alarm under near-crash conditions: A driving simulator study

2022 ◽  
Vol 166 ◽  
pp. 106544
Author(s):  
Xianyu Li ◽  
Zhongyin Guo ◽  
Yi Li
Author(s):  
R. Wade Allen ◽  
Zareh Parseghian ◽  
Anthony C. Stein

There is a large body of research that documents the impairing effect of alcohol on driving behavior and performance. Some of the most significant alcohol influence seems to occur in divided attention situations when the driver must simultaneously attend to several aspects of the driving task. This paper describes a driving simulator study of the effect of a low alcohol dose, .055 BAC (blood alcohol concentration %/wt), on divided attention performance. The simulation was mechanized on a PC and presented visual and auditory feedback in a truck cab surround. Subjects were required to control speed and steering on a rural two lane road while attending to a peripheral secondary task. The subject population was composed of 33 heavy equipment operators who were tested during both placebo and drinking sessions. Multivariate Analysis of Variance showed a significant and practical alcohol effect on a range of variables in the divided attention driving task.


This proceedings paper was inadvertently published after the authors notified the journal of their desire to withdraw the paper from the conference. The paper was not actually presented at the conference. This retraction is being issued at the authors’ request. The Journal, Human Factors, and SAGE apologize to the authors and readers for the inadvertent publication.


Author(s):  
Harald Witt ◽  
Carl G. Hoyos

Accident statistics and studies of driving behavior have shown repeatedly that curved roads are hazardous. It was hypothesized that the safety of curves could be improved by indicating in advance the course of the road in a more effective way than do traditional road signs. A code of sequences of stripes put on right edge of the pavement was developed to indicate to the driver the radius of the curve ahead. The main characteristic of this code was the frequency of transitions from code elements to gaps between elements. The effect of these markings was investigated on a driving simulator. Twelve subjects drove on simulated roads of different curvature and with different placement of the code in the approach zone. Some positive effects of the advance information could be observed. The subjects drove more steadily, more precisely, and with a more suitable speed profile.


2021 ◽  
Author(s):  
Mustafa Suhail Almallah ◽  
Shabna Sayed Mohammed ◽  
Qinaat Hussain ◽  
Wael K. M. Alhajyaseen

The illegal overtaking/crossing of stopped school buses has been identified as one of the leading causes of students’ injuries and fatalities. The likelihood of students in getting involved in a school bus-related crash increases during loading/unloading. The main objective of this driving simulator study was to study the effectiveness of different treatments in improving students’ safety by reducing the illegal overtaking/crossing of stopped school buses. Treatments used in this research are LED, Road Narrowing and Red Pavement. All proposed treatments were compared with the control condition (i.e., typical condition in the State of Qatar). Seventy-two subjects with valid Qatari driving license were invited to participate in this study. Each subject was exposed to three situations (i.e., Situation 1: the school bus is stopped in the same traveling direction, Situation 2: the school bus is stopped in the opposite traveling direction, Situation 3: the school bus is not present at the bus stop). Results showed that LED and Road Narrowing treatments were effective in reducing the illegal overtaking/crossing of stopped school buses. Moreover, the stopping behavior for drivers in LED and Road Narrowing was more consistent compared to the Red Pavement and control conditions. Finally, LED and Road Narrowing treatments motivated drivers to reduce their traveling speed by 5.16 km/h and 5.11 km/h, respectively, even with the absence of the school bus. Taking into account the results from this study, we recommend the proposed LED and Road Narrowing as potentially effective treatments to improve students’ safety at school bus stop locations.


Author(s):  
Steven W. Savage ◽  
Lily Zhang ◽  
Garrett Swan ◽  
Alex R. Bowers

Objective We conducted a driving simulator study to investigate scanning and hazard detection before entering an intersection. Background Insufficient scanning has been suggested as a factor contributing to intersection crashes. However, little is known about the relative importance of the head and eye movement components of that scanning in peripheral hazard detection. Methods Eleven older (mean 67 years) and 18 younger (mean 27 years) current drivers drove in a simulator while their head and eye movements were tracked. They completed two city drives (42 intersections per drive) with motorcycle hazards appearing at 16 four-way intersections per drive. Results Older subjects missed more hazards (10.2% vs. 5.2%). Failing to make a scan with a substantial head movement was the primary reason for missed hazards. When hazards were detected, older drivers had longer RTs (2.6s vs. 2.3s), but drove more slowly; thus, safe response rates did not differ between the two groups (older 83%; younger 82%). Safe responses were associated with larger (28.8° vs. 20.6°) and more numerous (9.4 vs. 6.6) gaze scans. Scans containing a head movement were stronger predictors of safe responses than scans containing only eye movements. Conclusion Our results highlight the importance of making large scans with a substantial head movement before entering an intersection. Eye-only scans played little role in detection and safe responses to peripheral hazards. Application Driver training programs should address the importance of making large scans with a substantial head movement before entering an intersection.


Sign in / Sign up

Export Citation Format

Share Document