Model of retention time and density of gradient peak capacity for improved LC-MS method optimization: Application to metabolomics

2022 ◽  
pp. 339492
Author(s):  
Fabrice Gritti ◽  
Mark David ◽  
Patrick Brothy ◽  
Matthew R. Lewis
1995 ◽  
Vol 60 (4) ◽  
pp. 559-567 ◽  
Author(s):  
Ján Krupčík ◽  
Tibor Hevesi ◽  
Pat Sandra

A method is suggested for the determination of the peak capacity in isothermal and temperature-programmed high resolution gas chromatography (HRGC). The calculation is based on the integral by Grushka and Giddings, requiring that the dependence of the peak width on the retention time be known. Regression analysis of experimental data gave evidence that in isothermal and linear temperature-programmed HRGC where the temperature rate is the single variable parameter, the dependence of the peak width on retention time can be approximated by a linear equation. Substitution of this linear dependence in the integrand gives an integral which can be solved analytically. For temperature-programmed HRGC with two variable parameters, viz. the time of initial isothermal period and the temperature rate, the above dependence can be fitted with a cubic equation. The resulting integral is more complex and has to be solved numerically. The peak capacities calculated by the procedure suggested and by the use of the separation number (TZ) are in a good agreement.


Author(s):  
D-J Kim ◽  
I-G Kim ◽  
J-Y Noh ◽  
H-J Lee ◽  
S-H Park ◽  
...  

Abstract As DRAM technology extends into 12-inch diameter wafer processing, plasma-induced wafer charging is a serious problem in DRAM volume manufacture. There are currently no comprehensive reports on the potential impact of plasma damage on high density DRAM reliability. In this paper, the possible effects of floating potential at the source/drain junction of cell transistor during high-field charge injection are reported, and regarded as high-priority issues to further understand charging damage during the metal pad etching. The degradation of block edge dynamic retention time during high temperature stress, not consistent with typical reliability degradation model, is analyzed. Additionally, in order to meet the satisfactory reliability level in volume manufacture of high density DRAM technology, the paper provides the guidelines with respect to plasma damage. Unlike conventional model as gate antenna effect, the cell junction damage by the exposure of dummy BL pad to plasma, was revealed as root cause.


2018 ◽  
Vol 69 (10) ◽  
pp. 2794-2798
Author(s):  
Alina Diana Panainte ◽  
Ionela Daniela Morariu ◽  
Nela Bibire ◽  
Madalina Vieriu ◽  
Gladiola Tantaru ◽  
...  

A peptidic hydrolysate has been obtained through hydrolysis of bovine hemoglobin using pepsin. The fractioning of the hydrolysate was performed on a column packed with CM-Sepharose Fast Flow. The hydrolysate and each fraction was filtered and then injected into a HPLC system equipped with a Vydak C4 reverse phase column (0.46 x 25 cm), suitable for the chromatographic separation of large peptides with 20 to 30 amino acids. The detection was done using mass spectrometry, and the retention time, size and distribution of the peptides were determined.


1981 ◽  
Vol 16 (1) ◽  
pp. 71-90 ◽  
Author(s):  
F. Tran ◽  
D. Gannon

Abstract The Deep Shaft process, originating from ICI Ltd. in the U.K., has been further developed by C-I-L Inc., Eco-Technology Division into an extremely energy efficient, high rate biological treatment process for industrial and municipal wastewaters. The Deep Shaft is essentially an air-lift reactor, sunk deep in the ground (100 - 160 m): the resulting high hydrostatic pressure together with very efficient mixing in the shaft provide extremely high oxygen transfer efficiencies (O.T.E.) of up to 90% vs 4 to 20% in other aerators. This high O.T.E. suggests real potential for Deep Shaft technology in the aerobic digestion of sludges and animal wastes: with conventional aerobic digesters an O.T.E. over 8% is extremely difficult to achieve. This paper describes laboratory and pilot plant Deep Shaft aerobic digester (DSAD) studies carried out at Eco-Research's Pointe Claire, Quebec laboratories, and at the Paris, Ontario pilot Deep Shaft digester. An economic pre-evaluation indicated that DSAD had the greatest potential for treating high solids content primary or secondary sludge (3-7% total solids) in the high mesophilic and thermophilic temperature range (25-60°C) i.e. in cases where conventional digesters would experience severe limitations of oxygen transfer. Laboratory and pilot plant studies have accordingly concentrated on high solids content sludge digestion as a function of temperature. Laboratory scale daily draw and fill DSAD runs with a 5% solids sludge at 33°C with a 3 day retention time have achieved 34% volatile solids reduction and a stabilized sludge exhibiting a specific oxygen uptake rate (S.O.U.R.) of less than 1 mgO2/gVSS/hour, measured at 20°C. This digestion rate is about four times faster than the best conventional digesters. Using Eco-Research's Paris, Ontario pilot scale DSAD (a 160 m deep 8 cm diameter u-tube), a 40% reduction in total volatile solids, (or 73% reduction of biodegradable VS) and a final SOUR of 1.2 mg02/gVSS/hour have been achieved for a 4.6% solids sludge in 4 days at 33°C, with loading rates of up to 7.9 kg VSS/m3-day. Laboratory runs at thermophilic temperatures (up to 60°C) have demonstrated that a stabilized sludge (24-41% VSS reduction) can be produced in retention time of 2 days or less, with a resulting loading rate exceeding 10 kg VSS/m3-day.


1988 ◽  
Vol 20 (11-12) ◽  
pp. 131-136 ◽  
Author(s):  
A. D. Wong ◽  
C. D. Goldsmith

The effect of discharging specific oil degrading bacteria from a chemostat to a refinery activated sludge process was determined biokinetically. Plant data for the kinetic evaluation of the waste treatment plant was collected before and during treatment. During treatment, the 500 gallon chemostatic growth chamber was operated on an eight hour hydraulic retention time, at a neutral pH, and was fed a mixture of refinery wastewater and simple sugars. The biokinetic constants k (days−1), Ks (mg/L), and K (L/mg-day) were determined before and after treatment by Monod and Lineweaver-Burk plots. Solids discharged and effluent organic concentrations were also evaluated against the mean cell retention time (MCRT). The maximum utilization rate, k, was found to increase from 0.47 to 0.95 days−1 during the operation of the chemostat. Subsequently, Ks increased from 141 to 556 mg/L. Effluent solids were shown to increase slightly with treatment. However, this was acceptable due to the polishing pond and the benefit of increased ability to accept shock loads of oily wastewater. The reason for the increased suspended solids in the effluent was most likely due to the continual addition of bacteria in exponential growth that were capable of responding to excess substrate. The effect of the chemostatic addition of specific microbial inocula to the refinery waste treatment plant has been to improve the overall organic removal capacity along with subsequent gains in plant stability.


1995 ◽  
Vol 32 (7) ◽  
pp. 135-142
Author(s):  
E. Görgün ◽  
N. Artan ◽  
D. Orhon ◽  
R. Tasli

Effective nitrogen removal is now required to protect water quality in sensitive coastal areas. This involves a much more difficult treatment process than for conventional domestic sewage as wastewater quantity and quality exhibits severe fluctuations in touristic zones. Activated sludge is currently the most widely used wastewater treatment and may be upgraded as a predenitrification system for nitrogen removal. Interpretation of nitrification and denitrification kinetics reveal a number of useful correlations between significant parameters such as sludge age, C/N ratio, hydraulic retention time, total influent COD. Nitrogen removal potential of predenitrification may be optimized by careful evaluation of wastewater character and the kinetic correlations.


1992 ◽  
Vol 26 (7-8) ◽  
pp. 1769-1778 ◽  
Author(s):  
S.-I. Lee ◽  
B. Koopman ◽  
E. P. Lincoln

Combined chemical flocculation and autoflotation were examined using pilot scale process with chitosan and alum as flocculants. Positive correlation was observed between dissolved oxygen concentration and rise rate. Rise rate depended entirely on the autoflotation parameters: mixing intensity, retention time, and flocculant contact time. Also, rise rate was influenced by the type of flocculant used. The maximum rise rate with alum was observed to be 70 m/h, whereas that with chitosan was approximately 420 m/h. The efficiency of the flocculation-autoflotation process was superior to that of the flocculation-sedimentation process.


1995 ◽  
Vol 31 (12) ◽  
pp. 267-273 ◽  
Author(s):  
B. S. O. Ceballos ◽  
A. Konig ◽  
B. Lomans ◽  
A. B. Athayde ◽  
H. W. Pearson

A single full-scale primary facultative pond in Sapé, north-east Brazil was monitored for performance and efficiency. The pond had a hydraulic retention time of 61 days and achieved a 95% BOD5 removal efficiency and had no helminth eggs in the effluent. The effluent failed to meet the WHO faecal coliform guideline for unrestricted irrigation. The pond was dominated by the cyanobacterium Microcystis and gave better than predicted orthophosphate removal. Details of how the system could be simply upgraded utilizing the same land are discussed.


Sign in / Sign up

Export Citation Format

Share Document