Grassland management and integration during crop rotation impact soil carbon changes and grass-crop production

2022 ◽  
Vol 324 ◽  
pp. 107703
Author(s):  
Teng Hu ◽  
Abad Chabbi
Author(s):  
N.A. Batyakhina N.A. ◽  

The influence of various annual multicomponent mixtures in the crop rotation link on its productivity and fertility of gray forest soil is shown. The complexity of the structure of plant communities has reduced the share of weeds in crop production annual mix, 2.6-3.7% and conservation tillage for wheat has increased by 2.5 times the phosphorus content is 1.9 times the potassium, 12% increased productivity.


Author(s):  
Mahdi Al-Kaisi ◽  
Mark A. Licht ◽  
Beth E. Larabee
Keyword(s):  

Author(s):  
Mahdi Al-Kaisi ◽  
Mark A. Licht ◽  
Beth E. Larabee
Keyword(s):  

2018 ◽  
Vol 177 ◽  
pp. 97-104 ◽  
Author(s):  
Émilie Maillard ◽  
Brian G. McConkey ◽  
Mervin St. Luce ◽  
Denis A. Angers ◽  
Jianling Fan

Weed Science ◽  
1999 ◽  
Vol 47 (2) ◽  
pp. 175-183 ◽  
Author(s):  
George O. Kegode ◽  
Frank Forcella ◽  
Sharon Clay

Approaches to crop production that successfully reduce weed seed production can benefit farming systems by reducing management inputs and costs. A 5-yr rotation study was conducted in order to determine the effects that interactions between crop rotation, tillage, and amount of herbicide and fertilizer (management inputs) have on annual grass and broad-leaved weed seed production and fecundity. There were 10 crop rotation and tillage system combinations and three levels of management inputs (high, medium, and low). Green and yellow foxtail were the major weed species, and together they yielded between 76 and 93% of collected weed seeds. From 1990 to 1994, average grass weed seed productions were 7.3 by 103, 3.7 by 1036.1 by 103and 5.7 by 103seeds m−-2, whereas average broad-leaved weed seed productions were 0.4 by 103, 0.4 by 103, 1.4 by 103, and 0.4 by 103seeds m−-2in crop rotations using conventional tillage (moldboard plow), conservation tillage, no tillage, and ridge tillage, respectively. Crop rotations using conventional or ridge tillage consistently produced more grass and broad-leaved weed seeds, especially in low-input plots. There was little difference in weed seed production among input levels for crop rotations using conservation tillage. Comparing rotations that began and ended with a corn crop revealed that by increasing crop diversity within a rotation while simultaneously reducing the amount of tillage, significantly fewer grass and broad-leaved weed seeds were produced. Among the rotations, grass and broad-leaved weed fecundity were highly variable, but fecundity declined from 1990 to 1994 within each rotation, with a concomitant increase in grass and broad-leaved weed density over the same period. Crop rotation in combination with reduced tillage is an effective way of limiting grass and broad-leaved weed seed production, regardless of the level of management input applied.


Sign in / Sign up

Export Citation Format

Share Document