Optimizing N fertilizer rates sustained rice yields, improved N use efficiency, and decreased N losses via runoff from rice-wheat cropping systems

2022 ◽  
Vol 324 ◽  
pp. 107724
Author(s):  
Jun Qiao ◽  
Jing Wang ◽  
Dong Zhao ◽  
Wei Zhou ◽  
Graeme Schwenke ◽  
...  
2017 ◽  
Vol 209 ◽  
pp. 39-46 ◽  
Author(s):  
Meng Wang ◽  
Lichun Wang ◽  
Zhenling Cui ◽  
Xinping Chen ◽  
Jiagui Xie ◽  
...  

2001 ◽  
Vol 1 ◽  
pp. 114-121 ◽  
Author(s):  
Lenz Haderlein ◽  
T.L. Jensen ◽  
R.E. Dowbenko ◽  
A.D. Blaylock

Controlled release nitrogen (N) fertilizers have been commonly used in horticultural applications such as turf grasses and container-grown woody perennials. Agrium, a major N manufacturer in North and South America, is developing a low-cost controlled release urea (CRU) product for use in field crops such as grain corn, canola, wheat, and other small grain cereals. From 1998 to 2000, 11 field trials were conducted across western Canada to determine if seed-placed CRU could maintain crop yields and increase grain N and N use efficiency when compared to the practice of side-banding of urea N fertilizer. CRU was designed to release timely and adequate, but not excessive, amounts of N to the crop. Crop uptake of N from seed-placed CRU was sufficient to provide yields similar to those of side-banded urea N. Grain N concentrations of the CRU treatments were higher, on average, than those from side-banded urea, resulting in 4.2% higher N use efficiency across the entire N application range from 25 to 100 kg ha-1. Higher levels of removal of N in grain from CRU compared to side-banded urea can result in less residual N remaining in the soil, and limit the possibility of N losses due to denitrification and leaching.


2013 ◽  
Vol 93 (6) ◽  
pp. 1073-1081 ◽  
Author(s):  
E. N. Johnson ◽  
S. S. Malhi ◽  
L. M. Hall ◽  
S. Phelps

Johnson, E. N., Malhi, S. S., Hall, L. M. and Phelps, S. 2013. Effects of nitrogen fertilizer application on seed yield, N uptake, N use efficiency, and seed quality of Brassica carinata . Can. J. Plant Sci. 93: 1073–1081. Ethiopian mustard (Brassica carinata A. Braun) is a relatively new crop in western Canada and research information on its response to N fertilizer is lacking. Two field experiments (exp. 1 at 3 site-years and exp. 2 at 4 site-years) were conducted from 2008 to 2010 in Saskatchewan and Alberta, Canada, to determine effect of N fertilizer application on Brassica carinata plant density, seed and straw yield, N uptake in seed and straw, N use efficiency (NUE), N fertilizer use efficiency (NFUE) and seed quality. N rates applied were 0 to 160 kg N ha−1 and 0 to 200 kg N ha−1 in exps. 1 and 2, respectively. Plant density was not affected by increasing N rate at 5 site-years but declined with high rates of N application at 2 site-years. Seed yield responded to applied N in 6 of 7 site-years, with the non-responsive site having a high total N uptake at the 0 kg N ha−1 rate (high Nt value). There were no sites where seed yields were maximized with the N rates applied. Response trends of straw yield and N uptake were similar to that of seed yield at the corresponding site-years. NUE and NFUE generally declined as N rate increased. Protein concentration in seed generally increased and oil concentration in seed decreased with increasing N rates. In conclusion, the responses of seed yield, total N uptake, NUE, and NFUE to applied N was similar to those reported in other Brassica species with the exception that a rate was not identified in which Brassica carinata yields were maximized.


2012 ◽  
Vol 150 (5) ◽  
pp. 630-643 ◽  
Author(s):  
W. RYAN ◽  
D. HENNESSY ◽  
T. M. BOLAND ◽  
L. SHALLOO

SUMMARYThere is a continual requirement for grass-based production systems to optimize economic and environmental sustainability through increased efficiency in the use of all inputs, especially nitrogen (N). An N balance model was used to assess N use efficiency and N surplus, and to predict N losses from grass-based dairy production systems differing in the length of the grazing season (GS). Data from a 3-year grazing study with a 3×3 factorial design, with three turnout dates (1 February, 21 February and 15 March) and three housing dates (25 October, 10 November and 25 November) were used to generate estimates of N use efficiency and N losses. As the length of the GS increased by a mean of 30 days, milk production, milk solids production and milk N output increased by 3, 6 and 6%, respectively. The increase in milk production as the length of the GS increased resulted in a 2% decline in N surplus and a 5% increase in N use efficiency. Increasing GS length increased the proportion of grazed grass in the diet, which increased N cycling within the system, resulting in an 8% increase in milk solids/ha produced/kg of surplus N. The increased cycling of N reduced the quantity of N partitioned for loss to the environment by 8%. Reducing fertilizer N input by 20% increased N use efficiency by 22% and reduced total N losses by 16%. The environmental and production consequences of increased length of the GS and reduced N loss are favourable as the costs associated with N inputs increase.


Crop Science ◽  
2014 ◽  
Vol 54 (3) ◽  
pp. 1175-1183 ◽  
Author(s):  
Zhejun Liang ◽  
Kevin F. Bronson ◽  
Kelly R. Thorp ◽  
Jarai Mon ◽  
Mohammad Badaruddin ◽  
...  

2010 ◽  
Vol 90 (5) ◽  
pp. 655-666 ◽  
Author(s):  
Y. Gan ◽  
A M Johnston ◽  
J D Knight ◽  
C. McDonald ◽  
C. Stevenson

Understanding N dynamics in relation to cultural practices may help optimize N management in annual legume crops. This study was conducted at six environsites (location × year combinations) in southern Saskatchewan, 2004-2006, to quantify N uptake, N2 fixation, and N balance in chickpea (Cicer arietinum L.) in relation to cultivar choice, cropping systems, rhizobial inoculation, and soil N fertility. The cultivars Amit, CDC Anna, CDC Frontier, and CDC Xena were grown at N fertilizer rates of 0, 28, 56, 84, and 112 kg N ha-1 with no Rhizobium and at 0, 28, and 84 kg N ha-1 combined with Rhizobium inoculation, evaluated in both conventional tilled-fallow and continuously cropped no-till systems. Flax was used as a non-N-fixing reference crop. The cultivar CDC Xena had the lowest yield (1.57 Mg ha-1) and seed N uptake (54.4 kg N ha-1), with N use efficiency (NUE, 13.2 kg seed N kg-1) being 17% less than the average of the other cultivars. Consequently, N balance (N input via fertilizer and N-fixation minus N exported) was -32.4 kg N ha-1 for CDC Xena and less negative than the average of the other cultivars (-39.8 kg N ha-1). Inoculated chickpea took up 10 kg ha-1 more N into the seed and 5 kg ha-1 more N into the straw than chickpea that was not inoculated. The amount of N fixed as a percentage of total N uptake was 15% for non-inoculated chickpea and 29% for inoculated chickpea, resulting in negative N balance regardless of cropping system. Increasing N fertilizer rates decreased NUE, with the rate of decrease being greater for non-inoculated chickpea compared with inoculated chickpea. We conclude that optimum productivity of chickpea can be achieved with application of effective Rhizobium inoculants, and that best N management practices must be adopted in the succeeding crops due to a large negative N balance after a chickpea crop.Key words: Chickpea, Cicer arietinum, N fertilizer, N2 fixation, Rhizobium inoculants, N balance, nitrogen use efficiency, N uptake


2021 ◽  
Vol 319 ◽  
pp. 107546
Author(s):  
Guillermo Guardia ◽  
Sandra García-Gutiérrez ◽  
Rocío Rodríguez-Pérez ◽  
Jaime Recio ◽  
Antonio Vallejo

Sign in / Sign up

Export Citation Format

Share Document