Spatial patterns of county-level arable land productive-capacity and its coordination with land-use intensity in mainland China

2022 ◽  
Vol 326 ◽  
pp. 107757
Author(s):  
Sijing Ye ◽  
Shuyi Ren ◽  
Changqing Song ◽  
Changxiu Cheng ◽  
Shi Shen ◽  
...  
Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Yi Lou ◽  
Guanyi Yin ◽  
Yue Xin ◽  
Shuai Xie ◽  
Guanghao Li ◽  
...  

In the rapid process of urbanization in China, arable land resources are faced with dual challenges in terms of quantity and quality. Starting with the change in the coupling coordination relationship between the input and output on arable land, this study applies an evaluation model of the degree of coupling coordination between the input and output (D_CCIO) on arable land and deeply analyzes the recessive transition mechanism and internal differences in arable land use modes in 31 provinces on mainland China. The results show that the total amount and the amount per unit area of the input and output on arable land in China have presented different spatio-temporal trends, along with the mismatched movement of the spatial barycenter. Although the D_CCIO on arable land increases slowly as a whole, 31 provinces show different recessive transition mechanisms of arable land use, which is hidden in the internal changes in the input–output structure. The results of this study highlight the different recessive transition patterns of arable land use in different provinces of China, which points to the outlook for higher technical input, optimized planting structure, and the coordination of human-land relationships.


2017 ◽  
Vol 14 (10) ◽  
pp. 2627-2640 ◽  
Author(s):  
Norbert Bischoff ◽  
Robert Mikutta ◽  
Olga Shibistova ◽  
Alexander Puzanov ◽  
Marina Silanteva ◽  
...  

Abstract. Macro-aggregates especially in agricultural steppe soils are supposed to play a vital role for soil organic carbon (OC) stabilization at a decadal timescale. While most research on soil OC stabilization in steppes focused on North American prairie soils of the Great Plains with information mainly provided by short-term incubation experiments, little is known about the agricultural steppes in southwestern Siberia, though they belong to the greatest conversion areas in the world and occupy an area larger than that in the Great Plains. To quantify the proportion of macro-aggregate-protected OC under different land use as function of land use intensity and time since land use change (LUC) from pasture to arable land in Siberian steppe soils, we determined OC mineralization rates of intact (250–2000 µm) and crushed (< 250 µm) macro-aggregates in long-term incubations over 401 days (20 °C; 60 % water holding capacity) along two agricultural chronosequences in the Siberian Kulunda steppe. Additionally, we incubated bulk soil (< 2000 µm) to determine the effect of LUC and subsequent agricultural use on a fast and a slow soil OC pool (labile vs. more stable OC), as derived from fitting exponential-decay models to incubation data. We hypothesized that (i) macro-aggregate crushing leads to increased OC mineralization due to an increasing microbial accessibility of a previously occluded labile macro-aggregate OC fraction, and (ii) bulk soil OC mineralization rates and the size of the fast OC pool are higher in pasture than in arable soils with decreasing bulk soil OC mineralization rates and size of the fast OC pool as land use intensity and time since LUC increase. Against our hypothesis, OC mineralization rates of crushed macro-aggregates were similar to those of intact macro-aggregates under all land use regimes. Macro-aggregate-protected OC was almost absent and accounted for < 1 % of the total macro-aggregate OC content and to a maximum of 8 ± 4 % of mineralized OC. In accordance to our second hypothesis, highest bulk soil OC mineralization rates and sizes of the fast OC pool were determined under pasture, but mineralization rates and pool sizes were unaffected by land use intensity and time since LUC. However, at one chronosequence mean residence times of the fast and slow OC pool tended to decrease with increasing time since establishment of arable use. We conclude that the tillage-induced breakdown of macro-aggregates has not reduced the OC contents in the soils under study. The decline of OC after LUC is probably attributed to the faster soil OC turnover under arable land as compared to pasture at a reduced plant residue input.


2016 ◽  
Vol 59 ◽  
pp. 569-579 ◽  
Author(s):  
Guangsheng Liu ◽  
Hongmei Wang ◽  
Yingxuan Cheng ◽  
Biao Zheng ◽  
Zongliang Lu

2020 ◽  
Vol 99 ◽  
pp. 104845 ◽  
Author(s):  
Sijing Ye ◽  
Changqing Song ◽  
Shi Shen ◽  
Peichao Gao ◽  
Changxiu Cheng ◽  
...  

2019 ◽  
Vol 29 (4) ◽  
pp. e01875 ◽  
Author(s):  
Martin Stjernman ◽  
Ullrika Sahlin ◽  
Ola Olsson ◽  
Henrik G. Smith

2011 ◽  
Vol 150 (2) ◽  
pp. 179-190 ◽  
Author(s):  
D. ZHOU ◽  
P. AN ◽  
Z. PAN ◽  
F. ZHANG

SUMMARYA cropping system is the consequence of environmental and socio-economic conditions that determine the intensity of agricultural land use. Accurate information on regional land use intensity and changes in land use intensity is important for food security and sustainable resource management in China. Therefore, a better understanding of the spatial and temporal changes in arable land use intensity (ALUI) based on the cropping system used is essential to comprehend the changes in land use and the sustainability of the food system. The purpose of the present study was to investigate the spatial difference in ALUI and how it has changed in China by comparing data on cropping systems from 1985 and 2005. The basic cropping system data were acquired from the 1985 reference book and the 2005 national land use investigation. The ALUI was defined by the application of inputs (irrigation water and fertilizer) to arable land and the duration of disturbances (the duration of cultivation and the frequency of cropping), and it was calculated using the information entropy approach at the cropping region scale (cropping region being defined by the geographical and climatic conditions at the beginning of the 1980s). Spatial and temporal changes in the ALUI in China over the past two decades were observed and analysed. The results indicated a clear pattern in ALUI, increasing from the north to the south in 2005. Furthermore, the ALUI significantly increased after the 1980s, but the rate of increase was lower in the south than in the north. The most intensive land use in 1985 was in the area of the lower reach of the Yangtze and Huai Rivers, and it expanded northwards towards the Huang-Huai-Hai plain in 2005. The large increase in intensity in the northern single-cropping regions was strongly associated with a rapid increase in inputs and longer duration of cultivation. Decreases in duration of cultivation and planting area helped slow the ALUI increase in multiple cropping regions, which were concentrated in coastal and economically developed regions where more fertile soil and suitable climates existed, allowing the growth of multiple crops. These results suggested that a decrease in the planting area and a slow increase in the ALUI in the lower reaches of the Yangtze River, South China, Southeast China and Northeast China should be of concern, but land use in some western regions should maintain the land production capacity to build sustainable cropping. In the future, it will be necessary to produce more food in a more sustainable way.


Sign in / Sign up

Export Citation Format

Share Document