Assessment of CERES-Maize model in simulating maize growth, yield and soil water content under rainfed, limited and full irrigation

2022 ◽  
Vol 259 ◽  
pp. 107271
Author(s):  
E. Amiri ◽  
S. Irmak ◽  
H. Ahmadzadeh Araji
2011 ◽  
Vol 63 (4) ◽  
pp. 1167-1171 ◽  
Author(s):  
Ljiljana Prokic ◽  
Radmila Stikic

The effects of drought and partial root drying (PRD) on shoot and root growth was assessed in the wild type Ailsa Craig (WT) and the flacca tomato mutant deficient in the plant hormone ABA. Our results show that drought had an inhibitory effect on shoot growth in flacca and especially in WT; the most profound effect was observed in FI (full irrigation), then PRD and the smallest in D plants. Root development in both WT and flacca was stimulated after the 3rd day of the experiment following a decrease in the soil water content. On the 11th day of the experiment, when the soil water content was reduced by about 50% of full irrigation (FI), the root density was increased in the drying part of the PDR and on both sides of the drought treatment. On the basis of these results it can be assumed that increased root density and root length represent an adaptation or root adjustment to drought conditions.


1999 ◽  
Vol 124 (4) ◽  
pp. 437-444 ◽  
Author(s):  
David A. Goldhamer ◽  
Elias Fereres ◽  
Merce Mata ◽  
Joan Girona ◽  
Moshe Cohen

To characterize tree responses to water deficits in shallow and deep rooted conditions, parameters developed using daily oscillations from continuously measured soil water content and trunk diameter were compared with traditional discrete monitoring of soil and plant water status in lysimeter and field-grown peach trees [Prunus persica (L.) Batsch `O'Henry']. Evaluation occurred during the imposition of deficit irrigation for 21 days followed by full irrigation for 17 days. The maximum daily available soil water content fluctuations (MXAWCF) taken at any of the four monitored root zone depths responded most rapidly to the deficit irrigation. The depth of the MXAWCF increased with time during the deficit irrigation. Differences relative to a fully irrigated control were greater in the lysimeter than the field-grown trees. Minimum daily trunk diameter (MNTD) and maximum daily trunk shrinkage (MDS) responded sooner than midday stem water potential (stem Ψ), predawn or midday leaf water potential (predawn leaf Ψ and leaf Ψ), or photosynthesis (A). Parameters based on trunk diameter monitoring, including maximum daily trunk diameter (MXTD), correlated well with established physiological parameters of tree water status. Statistical analysis of the differences in the measured parameters relative to fully irrigated trees during the first 10 days of deficit irrigation ranked the sensitivity of the parameters in the lysimeter as MXAWCF > MNTD > MDS > MXTD > stem Ψ = A = predawn leaf Ψ = leaf Ψ. Equivalent analysis with the field-grown trees ranked the sensitivity of the parameters as MXAWCF > MNTD > MDS > stem Ψ = leaf Ψ = MXTD = predawn leaf Ψ > A. Following a return to full irrigation in the lysimeter, MDS and all the discrete measurements except A quickly returned to predeficit irrigation levels. Tree recovery in the field-grown trees was slower and incomplete due to inadequate filling of the root zone. Fruit size was significantly reduced in the lysimeter while being minimally affected in the field-grown trees. Parameters only available from continuous monitoring hold promise for improving the precision of irrigation decision-making over the use of discrete measurements.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 577b-577
Author(s):  
Larry R. Parsons ◽  
T. Adair Wheaton

Hamlin orange trees on Swingle rootstock planted in 1991 were subjected to six different rates of irrigation with approximately the same amounts of water applied either daily (1-day), every other day (2-day), or every 4th day (4-day). Rates provided from 0.43 to 1.95 of historical daily evapotranspiration (ET) applied to the wetted area. Irrigation was delayed following rainfall. The effects of irrigation rate and frequency on trunk and canopy growth, yield, soil water content, root distribution, and total water use were studied. There was little effect of irrigation rate or frequency during the first 2 years after planting. However, tree growth improved with increasing irrigation rate during the 3rd and 4th years, and growth in these years was greater when irrigation was scheduled daily. Effects of rate and frequency on growth were not as great as expected. Yield increased as irrigation increased in 1994. Leaf nitrogen was generally higher at the lower irrigation rate. Soil water content varied with depth. Extraction of soil water was more rapid in the top 45 cm of soil. Roots after 4 years did not extend below 45 cm with 60% of the roots in the top 15 cm and 90% in the top 30 cm. Roots were concentrated closer to the trunk for trees at the lower irrigation rates.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 199097-199110
Author(s):  
Jingxin Yu ◽  
Song Tang ◽  
Lili Zhangzhong ◽  
Wengang Zheng ◽  
Long Wang ◽  
...  

Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


2010 ◽  
Vol 59 (1) ◽  
pp. 157-164 ◽  
Author(s):  
E. Tóth ◽  
Cs. Farkas

Soil biological properties and CO2emission were compared in undisturbed grass and regularly disked rows of a peach plantation. Higher nutrient content and biological activity were found in the undisturbed, grass-covered rows. Significantly higher CO2fluxes were measured in this treatment at almost all the measurement times, in all the soil water content ranges, except the one in which the volumetric soil water content was higher than 45%. The obtained results indicated that in addition to the favourable effect of soil tillage on soil aeration, regular soil disturbance reduces soil microbial activity and soil CO2emission.


Author(s):  
Justyna Szerement ◽  
Aleksandra Woszczyk ◽  
Agnieszka Szyplowska ◽  
Marcin Kafarski ◽  
Arkadiusz Lewandowski ◽  
...  

2014 ◽  
Vol 22 (3) ◽  
pp. 300-307
Author(s):  
Meijun ZHANG ◽  
Wude YANG ◽  
Meichen FENG ◽  
Yun DUAN ◽  
Mingming TANG ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 549f-550
Author(s):  
Mongi Zekri ◽  
Bruce Schaffer ◽  
Stephen K. O'Hair ◽  
Roberto Nunez-Elisea ◽  
Jonathan H. Crane

In southern Florida, most tropical fruit crops between Biscayne and Everglades National Parks are irrigated at rates and frequencies based on experience and observations of tree growth and fruit yield rather than on reliable quantitative information of actual water use. This approach suggests that irrigation rates may be excessive and could lead to leaching of agricultural chemicals into the groundwater in this environmentally sensitive area. Therefore, a study is being conducted to increase water use efficiency and optimize irrigation by accurately scheduling irrigation using a very effective management tool (EnviroScan, Sentek Environmental Innovations, Pty., Kent, Australia) that continuously monitors soil water content with highly accurate capacitance multi-sensor probes installed at several depths within the soil profile. The system measures crop water use by monitoring soil water depletion rates and allows the maintenance of soil water content within the optimum range (below field capacity and well above the onset of plant water stress). The study is being conducted in growers' orchards with three tropical fruit crops (avocado, carambola, and `Tahiti' lime) to facilitate rapid adoption and utilization of research results.


Sign in / Sign up

Export Citation Format

Share Document