Effects of residual film on maize root distribution, yield and water use efficiency in Northwest China

2022 ◽  
Vol 260 ◽  
pp. 107289
Author(s):  
Pengpeng Chen ◽  
Xiaobo Gu ◽  
Yuannong Li ◽  
Linran Qiao ◽  
Yupeng Li ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 632
Author(s):  
Weinan Lu ◽  
Wenxin Liu ◽  
Mengyang Hou ◽  
Yuanjie Deng ◽  
Yue Deng ◽  
...  

Improving agricultural water use efficiency (AWUE) is an important way to solve the shortage of water resources in arid and semi-arid regions. This study used the Super-DEA (data envelopment analysis) to measure the AWUE of 52 cities in Northwest China from 2000 to 2018. Based on spatial and temporal perspectives, it applied Exploratory Spatial Data Analysis (ESDA) to explore the dynamic evolution and regional differences of AWUE. A spatial econometric model was then used to analyze the main factors that influence the AWUE in Northwest China. The results showed firstly that the overall AWUE in Northwest China from 2000 to 2018 presented a steady upward trend. However, only a few cities achieved effective agricultural water usage by 2018, and the differences among cities were obvious. Secondly, AWUE showed an obvious spatial autocorrelation in Northwest China and showed significant high–high and low–low agglomeration characteristics. Thirdly, economic growth, urbanization development, and effective irrigation have significant, positive effects on AWUE, while per capita water resource has a significant, negative influence. Finally, when improving the AWUE in arid and semi-arid regions, plans should be formulated according to local conditions. The results of this study can provide new ideas on the study of AWUE in arid and semi-arid regions and provide references for the formulation of regional agricultural water resource utilization policies as well.


2016 ◽  
Vol 74 (5) ◽  
pp. 1106-1115 ◽  
Author(s):  
L. Mu ◽  
L. Fang ◽  
H. Wang ◽  
L. Chen ◽  
Y. Yang ◽  
...  

Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004–2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.


2019 ◽  
Vol 7 (3) ◽  
pp. 322-334 ◽  
Author(s):  
Guoqiang Zhang ◽  
Dongping Shen ◽  
Bo Ming ◽  
Ruizhi Xie ◽  
Xiuliang Jin ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 495 ◽  
Author(s):  
Pingfeng Li ◽  
Huang Tan ◽  
Jiahang Wang ◽  
Xiaoqing Cao ◽  
Peiling Yang

Although water-saving measures are increasingly being adopted in orchards, little is known about how different irrigation methods enhance water use efficiency at the root system level. To study the allocation of water sources of water absorption by cherry roots under two irrigation methods, surface irrigation and drip irrigation, oxygen isotope tracing and root excavation were used in this study. We found that different irrigation methods have different effects on the average δ18O content of soil water in the soil profile. The IsoSource model was applied to calculate the contribution rate of water absorption by cherry roots under these irrigation methods. During the drought period in spring (also a key period of water consumption for cherry trees), irrigation water was the main source of water absorbed by cherry roots. In summer, cherry roots exhibited a wide range of water absorption sources. In this case, relative to the surface irrigation mode, the drip irrigation mode demonstrated higher irrigation water use efficiency. After two years of the above experiment, root excavation was used to analyze the effects of these irrigation methods on the distribution pattern of roots. We found that root distribution is mainly affected by soil depth. The root system indexes in 10–30 cm soil layer differ significantly from those in other soil layers. Drip irrigation increased the root length density (RLD) and root surface area (RSA) in the shallow soil. There was no significant difference in root biomass density (RBD) and root volume ratio (RVR) between the two irrigation treatments. The effects of these irrigation methods on the 2D distribution of cherry RBD, RLD, RSA and RVR, which indicated that the cherry roots were mainly concentrated in the horizontal depths of 20 to 100 cm, which was related to the irrigation wet zone. In the current experiment, more than 85% of cherry roots were distributed in the space with horizontal radius of 0 to 100 cm and vertical depth of 0 to 80 cm; above 95% of cherry roots were distributed in the space with the horizontal radius of 0 to 150 cm and the vertical depth of 0 to 80 cm. Compared with surface irrigation, drip irrigation makes RLD and RSA more concentrated in the horizontal range of 30–100 cm and vertical range of 0–70 cm.


2016 ◽  
Vol 199 ◽  
pp. 129-135 ◽  
Author(s):  
Xiao Guoju ◽  
Zhang Qiang ◽  
Zhang Fengju ◽  
Ma Fei ◽  
Wang Jing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document