Deep soil water storage and drainage following conversion of deep rooted to shallow rooted vegetation

2022 ◽  
Vol 261 ◽  
pp. 107359
Author(s):  
Han Li ◽  
Bing Cheng Si ◽  
Zhiqiang Zhang ◽  
Changhong Miao
2015 ◽  
Vol 531 ◽  
pp. 534-542 ◽  
Author(s):  
Lei Gao ◽  
Yujuan Lv ◽  
Dongdong Wang ◽  
Muhammad Tahir ◽  
Xinhua Peng

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ruixue Cao ◽  
Xiaoxu Jia ◽  
Laiming Huang ◽  
Yuanjun Zhu ◽  
Lianhai Wu ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 989 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Bingcheng Si ◽  
Min Li ◽  
Huijie Li

Land-use change could substantially alter the soil water balance and hydrological cycles; however, little is known on the changes in deep soil water following a cycle of afforestation and deforestation. The purpose of this study was to quantify the soil water deficit in an apple orchard and subsequent replenishment of deep soil water after the orchard was felled. Soil water changes were quantified using the “space-for-time” method through a paired plot design. The results showed that the water storage in deep soil (>3 m in depth) began to decrease when the apple tree reached about 10 years of age. The cumulative deficit of deep soil water storage in the 3–18 m soil depth could reach about 1200 mm; however, deep soil water was so depleted that apple trees can no longer adsorb water from the deep soil when apple trees are older (>22 years old). After the apple orchard was converted to cropland, precipitation replenished the desiccated deep soil to a depth of about 7 m in the first two years, but thereafter, both water recovery amount and the advance rate of the wetting front were slowed down. After 15–16 years of recovery, soil water storage increased by 512–646 mm, accounting for 42.7–53.8% of the total cumulative soil water deficit caused by the apple orchard. However, it will take more than 26 years for soil water to be replenished to the level of the original cropland prior to planting apple trees. The considerable water deficit after afforestation and subsequent long water recovery time following deforestation extend our understanding of the effect of deep-rooted trees on water balance at the decade scale.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Tomás de Figueiredo ◽  
Ana Caroline Royer ◽  
Felícia Fonseca ◽  
Fabiana Costa de Araújo Schütz ◽  
Zulimar Hernández

The European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) product provides soil moisture estimates from radar satellite data with a daily temporal resolution. Despite validation exercises with ground data that have been performed since the product’s launch, SM has not yet been consistently related to soil water storage, which is a key step for its application for prediction purposes. This study aimed to analyse the relationship between soil water storage (S), which was obtained from soil water balance computations with ground meteorological data, and soil moisture, which was obtained from radar data, as affected by soil water storage capacity (Smax). As a case study, a 14-year monthly series of soil water storage, produced via soil water balance computations using ground meteorological data from northeast Portugal and Smax from 25 mm to 150 mm, were matched with the corresponding monthly averaged SM product. Linear (I) and logistic (II) regression models relating S with SM were compared. Model performance (r2 in the 0.8–0.9 range) varied non-monotonically with Smax, with it being the highest at an Smax of 50 mm. The logistic model (II) performed better than the linear model (I) in the lower range of Smax. Improvements in model performance obtained with segregation of the data series in two subsets, representing soil water recharge and depletion phases throughout the year, outlined the hysteresis in the relationship between S and SM.


2016 ◽  
Vol 13 (1) ◽  
pp. 63-75 ◽  
Author(s):  
K. Imukova ◽  
J. Ingwersen ◽  
M. Hevart ◽  
T. Streck

Abstract. The energy balance of eddy covariance (EC) flux data is typically not closed. The nature of the gap is usually not known, which hampers using EC data to parameterize and test models. In the present study we cross-checked the evapotranspiration data obtained with the EC method (ETEC) against ET rates measured with the soil water balance method (ETWB) at winter wheat stands in southwest Germany. During the growing seasons 2012 and 2013, we continuously measured, in a half-hourly resolution, latent heat (LE) and sensible (H) heat fluxes using the EC technique. Measured fluxes were adjusted with either the Bowen-ratio (BR), H or LE post-closure method. ETWB was estimated based on rainfall, seepage and soil water storage measurements. The soil water storage term was determined at sixteen locations within the footprint of an EC station, by measuring the soil water content down to a soil depth of 1.5 m. In the second year, the volumetric soil water content was additionally continuously measured in 15 min resolution in 10 cm intervals down to 90 cm depth with sixteen capacitance soil moisture sensors. During the 2012 growing season, the H post-closed LE flux data (ETEC =  3.4 ± 0.6 mm day−1) corresponded closest with the result of the WB method (3.3 ± 0.3 mm day−1). ETEC adjusted by the BR (4.1 ± 0.6 mm day−1) or LE (4.9 ± 0.9 mm day−1) post-closure method were higher than the ETWB by 24 and 48 %, respectively. In 2013, ETWB was in best agreement with ETEC adjusted with the H post-closure method during the periods with low amount of rain and seepage. During these periods the BR and LE post-closure methods overestimated ET by about 46 and 70 %, respectively. During a period with high and frequent rainfalls, ETWB was in-between ETEC adjusted by H and BR post-closure methods. We conclude that, at most observation periods on our site, LE is not a major component of the energy balance gap. Our results indicate that the energy balance gap is made up by other energy fluxes and unconsidered or biased energy storage terms.


Sign in / Sign up

Export Citation Format

Share Document