Salt and irrigation management of soil-grown Mediterranean greenhouse tomato crops drip-irrigated with moderately saline water

2022 ◽  
Vol 262 ◽  
pp. 107433
Author(s):  
Santiago Bonachela ◽  
María Dolores Fernández ◽  
Francisco Javier Cabrera-Corral ◽  
María Rosa Granados
2008 ◽  
pp. 521-528 ◽  
Author(s):  
A.P. Papadopoulos ◽  
U. Saha ◽  
X. Hao ◽  
S. Khosla

2015 ◽  
Vol 4 ◽  
pp. 440-444 ◽  
Author(s):  
Donato Buttaro ◽  
Pietro Santamaria ◽  
Angelo Signore ◽  
Vito Cantore ◽  
Francesca Boari ◽  
...  

2021 ◽  
Vol 34 (3) ◽  
pp. 659-669
Author(s):  
SAULO SOARES DA SILVA ◽  
GEOVANI SOARES DE LIMA ◽  
VERA LÚCIA ANTUNES DE LIMA ◽  
LAURIANE ALMEIDA DOS ANJOS SOARES ◽  
HANS RAJ GHEYI ◽  
...  

ABSTRACT This study was conducted with the objective of evaluating the quantum yield, photosynthetic pigments and biomass accumulation of mini watermelon cv. Sugar Baby, under strategies of irrigation with saline water and potassium fertilization. The experiment was conducted in a randomized block design, in a 8 × 3 factorial scheme, with three replicates, corresponding to eight strategies of irrigation with saline water applied at different phenological stages of the crop (control - irrigation with low-salinity water throughout the crop cycle, and salt stress in the vegetative, vegetative/flowering, flowering, flowering/fruiting, fruiting, fruiting/ fruit maturation and fruit maturation stage) and three potassium doses (50, 100 and 150% of the recommendation). The dose of 100% corresponded to 150 mg of K2O kg-1 of soil. Two levels of electrical conductivity of water were used: 0.8 and 4.0 dS m-1. Irrigation with water of 4.0 dS m-1 continuously in the vegetative and flowering stages increased the initial fluorescence and decreased the quantum efficiency of photosystem II of mini watermelon fertilized with 100 and 150% of K recommendation. Fertilization with 50% recommendation did not interfere in the fluorescence parameters of the mini watermelon, regardless of the irrigation management strategy. Chlorophyll a synthesis is inhibited by salt stress in the vegetative/flowering, flowering, flowering/fruiting, fruiting/maturation stages, as well as for total chlorophyll, except for the flowering stage. Application of 4.0 dS m-1 water in the flowering, fruiting/maturation and maturation stages promoted greater biomass accumulation in mini watermelon.


2013 ◽  
Vol 64 (12) ◽  
pp. 1049 ◽  
Author(s):  
D. M. Silburn ◽  
J. L. Foley ◽  
A. J. W. Biggs ◽  
J. Montgomery ◽  
T. A. Gunawardena

The Australian cotton industry and governments have funded research into the deep-drainage component of the soil–water balance for several decades. Cotton is dominantly grown in the northern Murray–Darling and Fitzroy Basins, using furrow irrigation on cracking clays. Previously, it was held that furrow irrigation on cracking clays was inherently efficient and there was little deep drainage. This has been shown to be simplistic and generally incorrect. This paper reviews global and northern Australian deep-drainage studies in irrigation, generally at point- or paddock-scale, and the consequences of deep drainage. For furrow-irrigated fields in Australia, key findings are as follows. (i) Deep drainage varies considerably depending on soil properties and irrigation management, and is not necessarily ‘very small’. Historically, values of 100–250 mm year–1 were typical, with 3–900 mm year–1 observed, until water shortage in the 2000s and continued research and extension focussed attention on water-use efficiency (WUE). (ii) More recently, values of 50–100 mm year–1 have been observed, with no deep drainage in drier years; these levels are lower than global values. (iii) Optimisation (flow rate, field length, cut-off time) of furrow irrigation can at least halve deep drainage. (iv) Cotton is grown on soils with a wide range in texture, sodicity and structure. (v) Deep drainage is moderately to strongly related to total rainfall plus irrigation, as it is globally. (vi) A leaching fraction, to avoid salt build-up in the soil profile, is only needed for irrigation where more saline water is used. Drainage from rainfall often provides an adequate leaching fraction. (vii) Near-saturated conditions occur for at least 2–6 m under irrigated fields, whereas profiles are dry under native vegetation in the same landscapes. (viii) Deep drainage leachate is typically saline and not a source of good quality groundwater recharge. Large losses of nitrate also occur in deep drainage. The consequences of deep drainage for groundwater and salinity are different where underlying groundwater can be used for pumping (fresh water, high yield; e.g. Condamine alluvia) and where it cannot (saline water or low yield; e.g. Border Rivers alluvia). Continuing improvements in WUE are needed to ensure long-term sustainability of irrigated cropping industries. Globally there is great potential for increased production using existing water supplies, given deep drainage of 10–25% of water delivered to fields and WUE of <50%. Future research priorities are to further characterise water movement through the unsaturated zone and the consequences of deep drainage.


HortScience ◽  
2010 ◽  
Vol 45 (8) ◽  
pp. 1192-1195 ◽  
Author(s):  
Genhua Niu ◽  
Denise S. Rodriguez ◽  
Kevin Crosby ◽  
Daniel Leskovar ◽  
John Jifon

Chile peppers are economically important crops in southern regions of the United States. Limited information is available on irrigation management with low-quality water or on salt-affected soils. The objective of this study was to determine the relative salt tolerance of 20 genotypes of chile peppers. In Expt. 1, seeds of selected pepper types (Anaheim, Ancho, Cayenne, Paprika, Jalapeño, Habanero, and Serrano) were germinated in potting mix and seedlings were grown in 2.6-L pots. Six weeks after sowing, salinity treatments were initiated by irrigating plants with nutrient solutions of different electrical conductivities (ECs): 1.4 (control), 3.0, or 6.0 dS·m−1. After 1 month of initiating treatments, shoots were harvested and dry weights were determined. All plants survived and no visual salt injury was observed regardless of pepper variety and treatment. There were no statistical differences between control and saline solution treatments in final height and shoot dry weight of Habanero 1, ‘Early Jalapeño’, ‘AZ-20’, ‘NuMex Joe E. Parker’, and ‘NuMex Sandia’. In Expt. 2, seeds of 20 genotypes were directly sown in 2.6-L containers filled with loamy sand. Saline water irrigation was initiated 37 days after sowing by irrigating plants either with saline (nutrient solution based, similar to Expt. 1) or nutrient solution (control). More than half the genotypes did not have 100% survival in the salinity treatment. Ancho 1, Ancho 2, Cayenne 1, ‘Early Jalapeño’, and ‘AZ-20’ had 100% survival regardless of salinity treatment. No plants of ‘TAM Mild Habanero’ survived when irrigated with saline water and less than half of the plants survived in the control. The relative tolerance of chile genotypes to salinity varied with substrate in some genotypes. From the combined results of the two experiments, the 20 pepper genotypes were ranked for salt tolerance based on seedling survival, visual quality, and growth. ‘Early Jalapeño’ and ‘AZ-20’ were relatively tolerant to salinity among the 20 genotypes, whereas ‘TAM Mild Habanero’ and ‘Ben Villalon’ were sensitive. Ancho 1, Ancho 2, Cayenne 1, and Cayenne 2 also had relatively high tolerance based on survival and visual quality, although shoot growth was reduced significantly.


Author(s):  
Geovani S. de Lima ◽  
Francisco W. A. Pinheiro ◽  
Hans R. Gheyi ◽  
Lauriane A. dos A. Soares ◽  
Pedro F. do N. Sousa ◽  
...  

ABSTRACT The objective of this study was to evaluate the effects of saline water irrigation management strategies and potassium doses on the concentration of photosynthetic pigments, gas exchange, and fruit production of ‘BRS GA1’ yellow passion fruit. The experiment was carried out under field conditions using a randomized block design, with treatments based on a 6 × 2 factorial scheme, related to six management strategies for irrigation with saline water (irrigation with low-salinity water throughout the crop cycle-WS; irrigation with high-salinity water in the vegetative stage-VE; flowering stage-FL; fruiting stage-FR; and successively in vegetative/flowering stages-VE/FL and vegetative/fruiting stages-VE/FR) and two doses of potassium (60 and 100% of the recommendation), with four replicates. The dose of 100% recommendation corresponded to 345 g of K2O plant-1 year-1. High electrical conductivity irrigation water (4.0 dS m-1) was used in different phenological stages according to treatment, alternating with water of low electrical conductivity (1.3 dS m-1). The synthesis of chlorophyll a and b, stomatal conductance, instantaneous carboxylation efficiency and water use efficiency of ‘BRS GA1’ yellow passion fruit were reduced under irrigation with water of 4.0 dS m-1 in all strategies adopted. Fertilization with 60% of the K recommendation promoted greater number of fruits and yellow passion fruit yield. Irrigation with 4.0 dS m-1 water in the vegetative/flowering and flowering stages reduced the yield of yellow passion fruit.


HortScience ◽  
2012 ◽  
Vol 47 (8) ◽  
pp. 1141-1152 ◽  
Author(s):  
Isabelle Lemay ◽  
Jean Caron ◽  
Martine Dorais ◽  
Steeve Pepin

Ongoing research on organic growing media for greenhouse tomato production is driven by the constant changes in the quality, stability, and form of the organic byproducts used in the manufacturing of these media. This study was undertaken to determine appropriate irrigation set points for a sawdust–peat mix (SP) under development given that the performance of this substrate appeared to be strongly dependent on appropriate irrigation management. A greenhouse tomato experiment was conducted to compare different irrigation management approaches for a SP substrate in the spring and summer. Using preliminary measurements from an initial experiment (Expt. 1), different irrigation strategies for the SP substrate were compared in a second experiment (Expt. 2): 1) a variable irrigation regime using a timer control (with frequency adjusted as a function of irradiance); 2) tensiometer control at –1.5 kPa; and 3) two constant substrate water potential devices: –1.1 kPa and –0.9 kPa. An irrigation timer/controller using solar radiation input was used with a rockwool control (RC) substrate. Measurements of plant activity [photosynthesis rate and stomatal conductance (gS)], substrate physical and chemical properties, biomass, and yield were obtained. For all irrigation strategies, results indicated that 10% to 20% higher photosynthesis rates and gS values were obtained with the SP substrate compared with RC. Data indicated that moderate drying conditions (matric potential ranging from –2.2 kPa to –1.5 kPa in Expt. 1 and Expt. 2, respectively) relative to container capacity (–0.6 kPa) were beneficial for improving plant photosynthetic activity and allowed the highest yields for the SP substrate. Variable irrigation management showed higher levels of plant activity than constant watering and increased the oxygen concentration in the substrate by ≈2% in absolute value relative to the constant water potential device. Lower CO2 and N2O levels were also observed with the variable irrigation strategy. On the other hand, maximum nutrient solution savings were achieved with the constant matric potential devices (8% to 31% relative to the RC). This study showed high productivity potential for the SP substrate with suitable irrigation management. Replacing conventional growing media with organic waste-based products using an appropriate irrigation strategy may help to increase the sustainability of the greenhouse industry.


2007 ◽  
Vol 88 (1-3) ◽  
pp. 73-82 ◽  
Author(s):  
G. Carmassi ◽  
L. Incrocci ◽  
R. Maggini ◽  
F. Malorgio ◽  
F. Tognoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document