Migration characteristics of soil salinity in saline-sodic cotton field with different reclamation time in non-irrigation season

2022 ◽  
Vol 263 ◽  
pp. 107440
Author(s):  
Rui Zong ◽  
Yue Han ◽  
Mingdong Tan ◽  
Ruihan Zou ◽  
Zhenhua Wang
1987 ◽  
Vol 27 (3) ◽  
pp. 381 ◽  
Author(s):  
AH Mehanni

In the Goulburn Valley, at a site near Tongala, Vic., shallow perched watertables receded from 18 to 135 cm below the surface and the piezometric pressure was reduced from 16 to 180 cm below the surface in a saline/sodic soil 3 months from the start of pumping. Consequently soil salinity was reduced from ECe 12.3 to 7.3 dS/m in the top 30 cm under 1 15 mm ofrainfall. Further reduction in salinity to ECe 3 dS/m was achieved after 19 months. The presence of electrolytes in irrigation water preserved soil permeability during the irrigation season, while gypsum was beneficial during the winter rainfall season. Perennial pasture was established 11 months after pumping commenced. Weeds that originally dominated the site disappeared, while clover produced 70% of total dry matter.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1127
Author(s):  
Wenhao Li ◽  
Zhenhua Wang ◽  
Jinzhu Zhang ◽  
Ningning Liu

The lowering of salt content in the field, especially in arid areas, after consecutive application of mulched drip irrigation (MDI) is of vital importance for sustainable cotton plantation. To elucidate the effects of long-term MDI on soil properties and cotton growth, this paper systematically monitored the soil salinity, ion concentrations and the yield of cotton in the field using MDI consecutively for six years in a typical oasis in Xinjiang, China. The results showed that MDI could significantly change salt distribution in the cotton field. During the six years tested, the soil salt content using MDI declined fast at first, and then the decline rate gradually decreased. In the 1st and 2nd year, the average salt content within 0–100 cm soil layer was larger than 20 g kg−1, which belonging to the saline soil. Then the salt content decreased to 10–20 g kg−1 in the 3rd and 4th year, and the cotton field declined to heavily saline soil. After 5 years of MDI, the soil turned to non-salinized. The Cl− and SO42− equivalence ratio (CSER) also decreased with the increase of application years of MDI. Saline-alkaline land developed from chloride-sulphate solonchak (0.2 < CSER < 1) into sulphate solonchak (CSER < 0.2) after 6 years of MDI. The survival rate of the cotton increased from 1.48% (1 year of MDI) to 76.3% (6 years of MDI), and the yield increased from 72.43 kg ha−1 to 4515.48 kg ha−1. When the average CSER, SAR and the soil salinity in 0–140 cm soil layer decreased to 0.60, 0.98 (mol kg−1)0.5 and 6.25 g kg−1, farmers can achieve a balance between income and expenditure. Moreover, when CSER, SAR, and the soil salinity continuously decreased to 0.44, 0.69 (mol kg−1)0.5 and 0.77 g kg−1, the cotton yield will exceed the average production level of cotton in Xinjiang. Under the current irrigation schedule in the oasis irrigation area, the soil salinity and groundwater level after applying MDI could be conducive to cotton growth. However, this situation had also caused a waste of nearly 200 mm of water resources. Therefore, authors suggested that further research on water-saving irrigation systems suitable for different soil conditions should be carried out, and also the differential quota management in production practice should be adopted.


2010 ◽  
Vol 113-116 ◽  
pp. 792-796
Author(s):  
Zhen Hua Wang ◽  
Xu Rong Zheng ◽  
Cheng Xia Lei ◽  
Zhao Yang Li

With the increasion of the application years under-mulch drip irrigation, the field soil salinity environment change and its influence on the crops cause the concern. To choose the field close and continuously apply under-mulch drip irrigation about 2-14 and the cotton field 8 pieces in order to monitor soil salinity variation.The results initially show that :the soil of inner mulch with 0-20cm soil desalts,from40cm to 80cm accumulates salt; between the mulch bare land the soil salinity on the surface assembles,above the 60cm the soil salinity accumulates,below the 100cm the soil salinity is close to the inner mulch.The soil salinity content within four drip irrigation years is relatively high, is comparatively low over 6 drip irrigation years,the field salinity environment is relatively good.From 0 to 40cm the soil salinity content decreases with the drip irrigation years increases at the end of the growth process; from 60 to 100cm the accumulated salinity with the drip irrigation four years is highest.Suggest enlarging the salinity regulation dynamics within 6 drip irrigation years.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244404
Author(s):  
Yu Zhang ◽  
Yongjun Zhu ◽  
Baolin Yao

The drip irrigation under mulch has become one of significant supporting technologies for cotton industry development in Xinjiang, and has shown the good economic and ecological benefits. With the rapid development of society and economy in Southern Xinjiang, the conventional mode of large-quota winter and spring irrigation, salt leaching and alkali decreasing is difficult to support sustainable development of land and water resources in Southern Xinjiang. This study tries to adjust soil moisture and salt content regulation mode of massive water salt leaching and drip irrigation under mulch in the non-growing period of cotton field in Southern Xinjiang, explores interannual soil salinity change features of drip irrigation cotton field without winter and spring irrigation, and provides experimental basis for drip irrigation technology under mulch which can reduce and exempt cotton irrigation in winter and spring. According to ET0, the dual-factor complete combination experiment involving 3 irrigating water quotas (I1, I2, I3) and 2 irrigation times (T12, T16) was designed, and 6 treatments were involved in total(I1T12,I2T12,I3T12,I1T16,I2T16 and I3T16). The investigation results of four-year (2012–2015) field positioning experiment showed that, under the condition of “germination under drip irrigation” without winter and spring irrigation, increasing irrigation quota and irrigation times could lower 0-100cm soil salinity accumulation, but the soil salinity accumulation degree was 40-100cm, and less than 0-30cm. In the seedling stage, bud stage, blossom and boll-forming stage, and boll opening stage, the average salinity of 0-100cm soil increased by 39.81%, 31.91%, 26.85% and 29.47%, respectively. Increasing irrigation quota and irrigation times could ease interannual soil salinity accumulation degree of cotton field with drip irrigation under mulch, without winter and spring irrigation. 0-100cm soil salinity before sowing was related to the irrigation quota of cotton in the growing stage of the last year. The larger the irrigation quota was, the smaller the soil salinity before sowing would be. The accumulation amount of soil salinity at the end of growing stage under different treatments was lower than that before sowing. The drip irrigation of cotton under mulch in the growing stage could effectively regulate soil salinity distribution and space-time migration process in the growing stage of cotton. Compared with the beginning of 2012, 0-100cm average soil salinity under 3 irrigation quotas (I1, I2, I3) was 33.66%, 5.60% and 1.24%, respectively. Salt accumulating rates under 12 irrigations and 16 irrigations were 20.66% and 6.33%, respectively. The soil had the risk of salinization when the “germination under drip irrigation” without winter and spring irrigation was used. Such results can provide the reference for prevention and treatment of soil moisture and salt content of cotton field with drip irrigation under mulch in the arid region.


2017 ◽  
Vol 49 (003) ◽  
pp. 525--528 ◽  
Author(s):  
N. H. CHANDIO ◽  
Q. H. MALLAH ◽  
M. M. ANWAR
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document