Mobile drip irrigation (MDI): Clogging of high flow emitters caused by dragging of driplines on the ground and by solid particles in the irrigation water

2022 ◽  
Vol 263 ◽  
pp. 107454
Author(s):  
Rubens Duarte Coelho ◽  
Alex Nunes de Almeida ◽  
Jéfferson de Oliveira Costa ◽  
Diego José de Sousa Pereira
Author(s):  
Rumiana Kireva ◽  
Roumen Gadjev

The deficit of the irrigation water requires irrigation technologies with more efficient water use. For cucumbers, the most suitable is the drip irrigation technology. For establishing of the appropriate irrigation schedule of cucumbers under the soil and climate conditions in the village of Chelopechene, near Sofia city, the researchеs was conducted with drip irrigation technology, adopting varying irrigation schedules and hydraulic regimes - from fully meeting the daily crops water requirements cucumbers to reduced depths with 20% and 40%. It have been established irrigation schedule with adequate pressure flows in the water source, irrigation water productivity and yields of in plastic unheated greenhouses of the Sofia plant.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 495 ◽  
Author(s):  
Pingfeng Li ◽  
Huang Tan ◽  
Jiahang Wang ◽  
Xiaoqing Cao ◽  
Peiling Yang

Although water-saving measures are increasingly being adopted in orchards, little is known about how different irrigation methods enhance water use efficiency at the root system level. To study the allocation of water sources of water absorption by cherry roots under two irrigation methods, surface irrigation and drip irrigation, oxygen isotope tracing and root excavation were used in this study. We found that different irrigation methods have different effects on the average δ18O content of soil water in the soil profile. The IsoSource model was applied to calculate the contribution rate of water absorption by cherry roots under these irrigation methods. During the drought period in spring (also a key period of water consumption for cherry trees), irrigation water was the main source of water absorbed by cherry roots. In summer, cherry roots exhibited a wide range of water absorption sources. In this case, relative to the surface irrigation mode, the drip irrigation mode demonstrated higher irrigation water use efficiency. After two years of the above experiment, root excavation was used to analyze the effects of these irrigation methods on the distribution pattern of roots. We found that root distribution is mainly affected by soil depth. The root system indexes in 10–30 cm soil layer differ significantly from those in other soil layers. Drip irrigation increased the root length density (RLD) and root surface area (RSA) in the shallow soil. There was no significant difference in root biomass density (RBD) and root volume ratio (RVR) between the two irrigation treatments. The effects of these irrigation methods on the 2D distribution of cherry RBD, RLD, RSA and RVR, which indicated that the cherry roots were mainly concentrated in the horizontal depths of 20 to 100 cm, which was related to the irrigation wet zone. In the current experiment, more than 85% of cherry roots were distributed in the space with horizontal radius of 0 to 100 cm and vertical depth of 0 to 80 cm; above 95% of cherry roots were distributed in the space with the horizontal radius of 0 to 150 cm and the vertical depth of 0 to 80 cm. Compared with surface irrigation, drip irrigation makes RLD and RSA more concentrated in the horizontal range of 30–100 cm and vertical range of 0–70 cm.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 888 ◽  
Author(s):  
Christoph Studer ◽  
Simon Spoehel

Appropriate irrigation scheduling for efficient water use is often a challenge for small-scale farmers using drip irrigation. In a trial with 12 farmers in Sébaco, Nicaragua, two tools to facilitate irrigation scheduling were tested: the Water Chart (a table indicating required irrigation doses) and tensiometers. The study aimed at evaluating if and to what extent simple tools can reduce irrigation water use and improve water productivity in drip-irrigated vegetable (beetroot; Beta vulgaris L.) production compared with the farmers’ usual practice. Irrigation water use was substantially reduced (around 20%) when farmers irrigated according to the tools. However, farmers did not fully adhere to the tool guidance, probably because they feared that their crop would not get sufficient water. Thus they still over-irrigated their crop: between 38% and 88% more water than recommended was used during the treatment period, resulting in 91% to 139% higher water use than required over the entire growing cycle. Water productivity of beetroot production was, therefore, much lower (around 3 kg/m3) than what can be achieved under comparable conditions, although yields were decent. Differences in crop yield and water productivity among treatments were not significant. The simplified Water Chart was not sufficiently understandable to farmers (and technicians), whereas tensiometers were better perceived, although they do not provide any indication on how much water to apply. We conclude that innovations such as drip irrigation or improved irrigation scheduling have to be appropriately introduced, e.g., by taking sufficient time to co-produce a common understanding about the technologies and their possible usefulness, and by ensuring adequate follow-up support.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2556 ◽  
Author(s):  
John Rohit Katuri ◽  
Pavel Trifonov ◽  
Gilboa Arye

The availability of brackish groundwater in the Negev Desert, Israel has motivated the cultivation of various salinity tolerant crops, such as olives trees. The long term suitability of surface drip irrigation (DI) or subsurface drip irrigation (SDI) in arid regions is questionable, due to salinity concerns, in particular, when brackish irrigation water is employed. Nevertheless, DI and SDI have been adopted as the main irrigation methods in olive orchards, located in the Negev Desert. Reports on continued reduction in olive yields and, essentially, olive orchard uprooting are the motivation for this study. Specifically, the main objective is to quantify the spatial distribution of salinity and sodicity in the active root-zone of olive orchards, irrigated with brackish water (electrical conductivity; EC = 4.4 dS m−1) for two decades using DI and subsequently SDI. Sum 246 soil samples, representing 2 m2 area and depths of 60 cm, in line and perpendicular to the drip line, were analyzed for salinity and sodicity quantities. A relatively small leaching-zone was observed below the emitters depth (20 cm), with EC values similar to the irrigation water. However, high to extreme EC values were observed between nearby emitters, above and below the dripline. Specifically, in line with the dripline, EC values ranged from 10 to 40 dS m−1 and perpendicular to it, from 40 to 120 dS m−1. The spatial distribution of sodicity quantities, namely, the sodium adsorption ratio (SAR, (meq L−1)0.5) and exchangeable sodium percentage (ESP) resembled the one obtained for the EC. In line with the dripline, from 15 to 30 (meq L−1)0.5 and up to 27%, in perpendicular to the drip line from 30 to 60 (meq L−l)0.5 and up to 33%. This study demonstrates the importance of long terms sustainable irrigation regime in arid regions in particular under DI or SDI. Reclamation of these soils with gypsum, for example, is essential. Any alternative practices, such as replacing olive trees and the further introduction of even high salinity tolerant plants (e.g., jojoba) in this region will intensify the salt buildup without leaving any option for soil reclamation in the future.


Horticulturae ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 10 ◽  
Author(s):  
Caroline Blanchard ◽  
Daniel E. Wells ◽  
Jeremy M. Pickens ◽  
David M. Blersch

Decoupled aquaponic systems are gaining popularity as a way to manage water quality in aquaponic systems to suit plant and fish growth independently. Aquaponic systems are known to be deficient in several plant-essential elements, which can be affected by solution pH to either increase or decrease available nutrients. To determine the effect of pH in a decoupled aquaponic system, a study was conducted using aquaculture effluent from tilapia culture tanks at four pH treatments: 5.0, 5.8, 6.5, and 7.0, used to irrigate a cucumber crop. Growth and yield parameters, nutrient content of the irrigation water, and nutrients incorporated into the plant tissue were collected over two growing seasons. pH did not have a practical effect on growth rate, internode length or yield over the two growing seasons. Availability and uptake of several nutrients were affected by pH, but there was no overarching effect that would necessitate its use in commercial systems. Nutrient concentrations in the aquaculture effluent would be considered low compared to hydroponic solutions; however, elemental analysis of leaf tissues was within the recommended ranges. Research into other nutrient sources provided by the system (i.e., solid particles carried with the irrigation water) would provide further information into the nutrient dynamics of this system.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2095 ◽  
Author(s):  
Li ◽  
Chen ◽  
Jin ◽  
Wang ◽  
Du

Freshwater shortage is becoming one of the major limiting factors for the sustainable development of agriculture in arid and semi-arid areas of north China. A two-year field experiment about mulched drip irrigation on maize was conducted in Hetao Irrigation District with five irrigation water salinity levels (total dissolved solids; 1, 2, 3, 4, and 5 g·L−1). The effects of irrigation water salinity on maize emergence, growth, yield, grain quality, and soil salt were determined. The results indicated that with the soil matric potential of -20 kPa and irrigation quota for each application of 22.5 mm, the irrigation water salinity showed negative influence on maize emergence and maize morphological characteristics (plant height, leaf area index, stem diameter, and dry matter), as irrigation water salt concentrations exceeded 3 g·L−1. The water use efficiency decreased linearly with the irrigation water salinity raised from 1 g·L−1 to 5 g·L−1, while maize grain protein increased and starch content decreased with the increase of irrigation water salt contents. Additionally, both the vertical radius and horizontal radius of salt isoline by mulched drip irrigation reduced with the irrigation water salt concentrations, when the irrigation water salinity was above 3 g·L−1. Summarily, irrigation water salinity of 3 g·L−1 was recommended for maize mulched drip irrigation in this study.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 947 ◽  
Author(s):  
Abdu Y. Yimam ◽  
Tewodros T. Assefa ◽  
Nigus F. Adane ◽  
Seifu A. Tilahun ◽  
Manoj K. Jha ◽  
...  

A field experiment consists of conservation agriculture (CA) and conventional tillage (CT) practices were set up in two areas, Robit and Dangishta, in sub-humid Ethiopian highlands. Irrigation water use, soil moisture, and agronomic data were monitored, and laboratory testing was conducted for soil samples, which were collected from 0 to 40 cm depth before planting and after harvest during the study period of 2015–2017. Calculation of crop coefficient (Kc) revealed a significant decrease in Kc values under CA as compared to CT. The result depicted that CA with a drip irrigation system significantly (α = 0.05) reduced Kc values of crops as compared to CT. Specifically, 20% reductions were observed for onion, cabbage, and garlic under CA whereas 10% reductions were observed for pepper throughout the crop base period. Consequently, irrigation water measurement showed that about 18% to 28% of a significant irrigation water savings were observed for the range of vegetables under CA as compared to CT. On the other hand, the results of soil measurement showed the CA practice significantly (α = 0.05) increased soil moisture (4%, 7%, 8%, and 10% increment for onion, cabbage, garlic, pepper) than CT practice even if irrigation input was small in CA practice. In addition, CA was found to improve the soil physico-chemical properties with significant improvement on organic matter (10%), field capacity (4%), and total nitrogen (10%) in the Dangishta experimental site. CA with drip irrigation is evidenced to be an efficient water-saving technology while improving soil properties to support sustainable intensification in the region.


Sign in / Sign up

Export Citation Format

Share Document