The almost sure stability for uncertain delay differential equations based on normal lipschitz conditions

2022 ◽  
Vol 420 ◽  
pp. 126903
Author(s):  
Yin Gao ◽  
Jinwu Gao ◽  
Xiangfeng Yang
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiao Wang ◽  
Yufu Ning

This paper first provides a concept of almost sure stability for uncertain delay differential equations and analyzes this new sort of stability. In addition, this paper derives three sufficient conditions for uncertain delay differential equations being stable almost surely. Finally, the relationship between almost sure stability and stability in measure for uncertain delay differential equations is discussed.


2021 ◽  
pp. 1-13
Author(s):  
Yin Gao ◽  
Lifen Jia

Uncertain delay differential equations (UDDEs) charactered by Liu process can be employed to model an uncertain control system with a delay time. The stability of its solution always be a significant matter. At present, the stability in measure for UDDEs has been proposed and investigated based on the strong Lipschitz condition. In reality, the strong Lipschitz condition is so strictly and hardly applied to judge the stability in measure for UDDEs. For the sake of solving the above issue, the stability in measure based on new Lipschitz condition as a larger scale of applications is verified in this paper. In other words, if it satisfies the strong Lipschitz condition, it must satisfy the new Lipschitz conditions. Conversely, it may not be established. An example is provided to show that it is stable in measure based on the new Lipschitz conditions, but it becomes invalid based on the strong Lipschitz condition. Moreover, a special class of UDDEs is verified to be stable in measure without any limited condition. Besides, some examples are investigated in this paper.


2012 ◽  
Vol 12 (01) ◽  
pp. 1150010 ◽  
Author(s):  
N. SRI NAMACHCHIVAYA ◽  
VOLKER WIHSTUTZ

In this paper, we study the almost-sure asymptotic stability of scalar delay differential equations with random parametric fluctuations which are modeled by a Markov process with finitely many states. The techniques developed for the determination of almost-sure asymptotic stability of finite dimensional stochastic differential equations will be extended to delay differential equations with random parametric fluctuations. For small intensity noise, we construct an asymptotic expansion for the exponential growth rate (the maximal Lyapunov exponent), which determines the almost-sure stability of the stochastic system.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3157-3172
Author(s):  
Mujahid Abbas ◽  
Bahru Leyew ◽  
Safeer Khan

In this paper, the concept of a new ?-generalized quasi metric space is introduced. A number of well-known quasi metric spaces are retrieved from ?-generalized quasi metric space. Some general fixed point theorems in a ?-generalized quasi metric spaces are proved, which generalize, modify and unify some existing fixed point theorems in the literature. We also give applications of our results to obtain fixed points for contraction mappings in the domain of words and to prove the existence of periodic solutions of delay differential equations.


Sign in / Sign up

Export Citation Format

Share Document