scholarly journals Intrusive and data-driven reduced order modelling of the rotating thermal shallow water equation

2022 ◽  
Vol 421 ◽  
pp. 126924
Author(s):  
Bülent Karasözen ◽  
Süleyman Yıldız ◽  
Murat Uzunca
PAMM ◽  
2021 ◽  
Vol 20 (S1) ◽  
Author(s):  
Süleyman Yıldız ◽  
Pawan Goyal ◽  
Peter Benner ◽  
Bülent Karasözen

SeMA Journal ◽  
2021 ◽  
Author(s):  
M. Azaïez ◽  
T. Chacón Rebollo ◽  
M. Gómez Mármol ◽  
E. Perracchione ◽  
A. Rincón Casado ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 266
Author(s):  
Péter German ◽  
Mauricio E. Tano ◽  
Carlo Fiorina ◽  
Jean C. Ragusa

This work presents a data-driven Reduced-Order Model (ROM) for parametric convective heat transfer problems in porous media. The intrusive Proper Orthogonal Decomposition aided Reduced-Basis (POD-RB) technique is employed to reduce the porous medium formulation of the incompressible Reynolds-Averaged Navier–Stokes (RANS) equations coupled with heat transfer. Instead of resolving the exact flow configuration with high fidelity, the porous medium formulation solves a homogenized flow in which the fluid-structure interactions are captured via volumetric flow resistances with nonlinear, semi-empirical friction correlations. A supremizer approach is implemented for the stabilization of the reduced fluid dynamics equations. The reduced nonlinear flow resistances are treated using the Discrete Empirical Interpolation Method (DEIM), while the turbulent eddy viscosity and diffusivity are approximated by adopting a Radial Basis Function (RBF) interpolation-based approach. The proposed method is tested using a 2D numerical model of the Molten Salt Fast Reactor (MSFR), which involves the simulation of both clean and porous medium regions in the same domain. For the steady-state example, five model parameters are considered to be uncertain: the magnitude of the pumping force, the external coolant temperature, the heat transfer coefficient, the thermal expansion coefficient, and the Prandtl number. For transient scenarios, on the other hand, the coastdown-time of the pump is the only uncertain parameter. The results indicate that the POD-RB-ROMs are suitable for the reduction of similar problems. The relative L2 errors are below 3.34% for every field of interest for all cases analyzed, while the speedup factors vary between 54 (transient) and 40,000 (steady-state).


Acta Numerica ◽  
2003 ◽  
Vol 12 ◽  
pp. 267-319 ◽  
Author(s):  
Roland W. Freund

In recent years, reduced-order modelling techniques based on Krylov-subspace iterations, especially the Lanczos algorithm and the Arnoldi process, have become popular tools for tackling the large-scale time-invariant linear dynamical systems that arise in the simulation of electronic circuits. This paper reviews the main ideas of reduced-order modelling techniques based on Krylov subspaces and describes some applications of reduced-order modelling in circuit simulation.


Sign in / Sign up

Export Citation Format

Share Document